Banach Spaces

- 1. Let (X, \mathcal{M}, μ) be a measure space with $\mu(X) < \infty$. Show that if $1 \leq q then <math>L^q(X) \supseteq L^p(X)$. Moreover, if X contains an infinite family of pairwise disjoint subsets of positive measure, then $L^q(X) \supseteq L^p(X)$.
- 2. Show that for little ℓ 's the reverse inclusion holds: if $1 \leq q$ $then <math>\ell^q \subsetneq \ell^p$.
- 3. In Problem 1. show that inclusion $I : L^p(X) \to L^q(X)$ is a bounded linear operator and determine its operator norm.
- 4. In Problem 2. show that inclusion $J : \ell^q \to \ell^p$ is a bounded linear operator and determine its operator norm.
- 5. Let (X, \mathcal{M}, μ) be a measure space, $1 \leq p, q, r < \infty, f \in L^p(X), g \in L^q(X)$. Show that if $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$ then $\|fg\|_r \leq \|f\|_p \|g\|_q$.

In the problems below the measure is always Lebesgue unless specified otherwise.

- 6. Let $1 \leq p, q, r < \infty$ and assume there is a constant c > 0 such that $\|fg\|_r \leq c \|f\|_p \|g\|_q$ for all $f \in L^p(\mathbb{R}^n)$ and all $g \in L^q(\mathbb{R}^n)$. Show that $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$.
- 7. True or false: Suppose $1 < r < \infty$ and $f \in L^p([0,1])$ for all $1 \leq p < r$. Then $f \in L^r([0,1])$ and $||f||_r = \lim_{p \to r^-} ||f||_p$.
- 8. True or false: $L^{\infty}([0,1]) = \bigcap_{p \in [1,\infty)} L^p([0,1]).$
- 9. Show that $L^p(\mathbb{R}) \not\subseteq L^q(\mathbb{R})$ for $p \neq q$.
- 10. Let $1 \leq p < \infty$. The goal of this exercise is to show that $L^p(\mathbb{R})$ and $L^p([0,1])$ are isometric Banach spaces (i.e. there is an isomorphism that preserves the norm). Both \mathbb{R} and [0,1] are equipped with Lebesgue measure m.
 - (a) Choose a continuous function $f : \mathbb{R} \to (0, \infty)$ such that $\int_{\mathbb{R}} f \, dm = 1$ and let μ be the probability measure on \mathbb{R} defined by

$$d\mu = f \ dm$$

Construct an isometric isomorphism

$$L^p(\mathbb{R}) \to L^p(\mu)$$

of the form $g \mapsto gh$ for a suitable function h.

- (b) Show that there is a homeomorphism $\phi : \mathbb{R} \to (0,1)$ such that $m(\phi(E)) = \mu(E)$ for every measurable E.
- (c) Conclude.