Open Mapping, Closed Graph, Banach-Steinhaus, Riesz

Closed Graph Theorem

- 1. Let A, B, C be Banach spaces, $h : A \to B, g : B \to C, f = gh : A \to C$ linear functions, with g and f bounded. If g is 1-1, show that h is bounded.
- 2. Let $T: V \to W$ be a linear map between Banach spaces. Let $\mathcal{A} \subset W^*$ be a set of bounded functionals on W that *separate points*, i.e. for all $w, w' \in W$ with $w \neq w'$ there is $\phi \in \mathcal{A}$ so that $\phi(w) \neq \phi(w')$. Assume that compositions $\phi T: V \to \mathbb{R}$ are bounded for all $\phi \in \mathcal{A}$. Show that T is bounded. Hint: In class we did the case $\mathcal{A} = W^*$.
- 3. Let V be a Banach space and $T: V \to C([0, 1])$ a linear operator such that $x_n \to 0$ in V imples that $T(x_n) \to 0$ pointwise. Show that T is bounded. Hint: Use Problem 2. Try evaluations at points of [0, 1].

Open Mapping Theorem

4. Let $T: V \to W$ be a surjective bounded operator between Banach spaces. Assume that T sends the closed unit ball to a compact set. Show that dim $W < \infty$.

Banach-Steinhaus

5. Let V, W be Banach spaces, $T_i : V \to W$ a sequence of bounded linear operators such that $\lim_{i\to\infty} T_i v$ exists for every $v \in V$. Define the linear map $T : V \to W$ by

$$Tv = \lim_{i \to \infty} T_i v$$

Show that T is bounded.

- 6. Let $f_n \in C([0,1])$ for $n = 1, 2, \cdots$. Show that the following two statements are equivalent:
 - (a) for every $\lambda \in C([0,1])^*$ we have $\lambda(f_n) \to 0$ as $n \to \infty$,
 - (b) $f_n(x) \to 0$ for every $x \in [0, 1]$ and $\sup ||f_n||_{\infty} < \infty$.

Hint: This also uses Riesz representation theorem.

- 7. Let V be a Banach space and $X \subset V$ a subset. Suppose that for every $f \in V^*$ the set $f(X) \subset \mathbb{R}$ is bounded. Show that X is a bounded subset of V.
- 8. Let $f_n \in L^1(\mathbb{R})$ and assume that $\lim_{n\to\infty} \int f_n g = 0$ for every $g \in L^{\infty}(\mathbb{R})$. Show that the sequence f_n is bounded in $L^1(\mathbb{R})$.

Riesz representation theorem

A couple of questions from the old quals.

- 9. Let X be a compact Hausdorff space and $A \subset C(X)$ a linear subspace. Let $S \subset X$ be a closed subspace. Suppose A has the following two properties:
 - A contains constant functions.
 - For every $f \in A$

$$\sup\{|f(x)| \mid x \in X\} = \sup\{|f(x)| \mid x \in S\}$$

Show that for every $x \in X$ there is a positive Borel measure μ_x on S such that for every $f \in A$

$$f(x) = \int_S f \ d\mu_x$$

Hint: The restriction $C(X) \to C(S)$ is injective on A and if the restriction of $f \in A$ is ≥ 0 on S then $f \ge 0$ on X.

10. Let X be a compact Hausdorff space and $H \subset C(X)$ a linear subspace. Assume that if $f \in H$ and $f \ge 0$ then f = 0. Show that there is a positive Borel measure μ on X such that $\mu(X) = 1$ and $\int h d\mu = 0$ for every $h \in H$.

Hint: Using the positive cone version of Hahn-Banach find a functional that sends constant 1 to 1 and is 0 on H.

Some norm computations

11. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear mapping represented by the $m \times n$ matrix (a_{ij}) with respect to the standard bases in \mathbb{R}^n , \mathbb{R}^m . Compute the norm of T if:

- (a) \mathbb{R}^n is equipped with the ℓ^1 norm and \mathbb{R}^m with the ℓ^∞ norm.
- (b) \mathbb{R}^n is endowed with the ℓ^{∞} norm and \mathbb{R}^m with the ℓ^1 norm.
- (c) \mathbb{R}^n and \mathbb{R}^m are both equipped with the ℓ^1 norm.
- (d) \mathbb{R}^n and \mathbb{R}^m are both endowed with the ℓ^{∞} norm.
- 12. Let T be the mapping from sequences to sequences given by T(x) = ywhere $y_n = 2^{-n} \sum_{k=1}^n x_k$. Prove that T is bounded from ℓ^{∞} to ℓ^1 and compute its norm.