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1 Folding and applications

A graph is a 1-dimensional cell complex. Thus we can have more than one
edge with the same pair of endpoints, and we can have edges that are loops.
We will usually label the oriented edges by a, b, · · · , and when we want the
same edge with the opposite orientation we will put a “bar” over the label,
or else capitalize the letter. E.g. a = A and a = a. The initial vertex of an
edge e is denoted ι(e) and the terminal vertex is τ(e). Thus τ(e) = ι(e).

More formally (Serre), a graph is a quadruple (V,E, , ι) where V and
E are sets (of vertices and oriented edges, respectively), : E → E is a free
involution (i.e. e 6= e and e = e), and ι : E → V is a function.

Amorphism of graphs is a cellular map that sends each open edge homeo-
morphically onto an open edge. Changing such a map by a homeomorphism
isotopic to the identity rel vertices will be regarded as the same morphism.
On the formal side, a morphism (V,E, , ι) → (V ′, E′, , ι) is a pair of maps
V → V ′, E → E′ that commute with and ι.

Definition 1. Amorphism f : G → G′ is an immersion if it is locally injective
(i.e. each point has a neighborhood on which f is injective). Since it is
always injective on open edges, we only need to check this on the vertices.
Serre would give the definition as:

ι(e1) = ι(e2) & f(e1) = f(e2) ⇒ e1 = e2.

E.g. covering maps are immersions, and so are inclusions of subgraphs.
Compositions of immersions are immersions.

Exercise 2. Suppose f : X → Y is an immersion between finite graphs.
Show that it is possible to attach finitely many 0- and 1-cells to X to create
a graph X̃ and to extend f to f̃ : X̃ → Y so that f̃ is a covering map.
Conclude that every immersion between finite graphs is the composition of
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an embedding and a covering map. Moreover, if Y has only one vertex, one
can construct X̃ by attaching 1-cells only.

Definition 3. An edge-path in a graph G is a sequence of edges e1, e2, · · · , ek
such that τ(ei) = ι(ei+1). An edge-path can be thought of as a morphism
I → G where I is a graph homeomorphic to [0, 1] (provided with an orien-
tation) or a point (sometimes it’s convenient to allow empty paths as well).

An edge-path is tight or reduced if I → G is an immersion, or equivalently,
no two consecutive edges are of the form e, e. An elementary homotopy is
the move that deletes such consecutive edges (with the understanding that
if e, e is the entire path, the new path is the initial point), or inserts them.

Exercise 4. If two edge-paths are related by an elementary homotopy, then
they are homotopic rel endpoints (with the understanding that if one path
is a point, then the statement means that the other is homotopic to constant
rel endpoints).

Exercise 5. Every edge-path can be transformed to a reduced edge-path
by applying a sequence of elementary homotopies. This process is called
tightening.

OK, this is too easy! Here is a slightly more challenging problem:

Exercise 6. If two reduced paths are homotopic rel endpoints, then they
are equal. In particular, two edge-paths are related by a sequence of ele-
mentary homotopies iff they are homotopic rel endpoints. Hint: Universal
cover. Define when a graph is a tree, show that the universal cover of a
connected graph is a tree, and finally show that reduced edge-paths in a
tree are embedded and they are determined by their endpoints.

Exercise 7. A nontrivial reduced edge-path that starts and ends at the base
vertex represents a nontrivial element of π1. An immersion between con-
nected graphs is injective in π1.

Definition 8. Suppose e1, e2 are two edges of G with e1 6= e2 and e1 6= e2
and with ι(e1) = ι(e2). Form a new graph G′ by identifying e1 with e2 and
identifying τ(e1) with τ(e2) (these may already be identified!). The quotient
map q : G → G′ is a morphism of graphs, and we call it a fold. A formal
definition is left to the reader. See Figure 1

Exercise 9. Show that folds of the second kind are epimorphisms in π1.

Theorem 10 (Stallings, 1983). Every morphism G → G′ of finite graphs
factors as

G = G0 → G1 → G2 → · · · → Gk → G′
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e2
e2

e1 = e2

e1
e1

e1 = e2

Figure 1: Two kinds of folds. The first is a homotopy equivalence. The
second is not.
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where the last map Gk → G′ is an immersion and all the other maps in the
sequence are folds. Moreover, such a factorization can be found by a very
fast algorithm.

OK, so this is all kindergarten. Still, the beauty of it is that it can be
used to give simple proofs of classical theorems about free groups. Just
remember the proof that every subgroup of a free group is free!

2 Subgroups, cores

Start by considering the following problem:

Given x1, x2, · · · , xk ∈ Fn, find a basis of the sub-
group H =< x1, x2, · · · , xk > generated by them.

We will consider the following example:
F2 =< a, b >, free group of rank 2, H =< a3b, abab, a2ba >.

Figure 2: Solid arrows represent a, and the shaded arrows are b. The base-
point is denoted by the large dot.

We start with the map from the bouquet of 3 circles to the bouquet of
two circles representing the 3 generators of H. Such a map is described by
a labeling of a subdivision of the bouquet of 3 circles. Then we find the
factorization as in Theorem 10.
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The first map represents 3 simultaneous folds. The others are single
folds, and the last fold is of the second kind. Keep in mind that each
labeled graph Gi represents a morphism gi : Gi → Y to the bouquet of two
circles Y . Note that folds commute with the gi’s, so that the image in π1 of
all gi’s is the same. But for i = 1 it is H. From the last graph we read off a
basis for H: a3b, abab.

Question 11. Does the ultimate graph depend on how we chose to fold?

Of course not! Why? It is precisely the core of the covering space YH of
Y corresponding to H. By the core I mean any of the following equivalent
items:

• the largest connected finite subgraph that contains the base vertex and
has no valence 1 vertices 1 except possibly the base vertex.

• the smallest subgraph that contains the base vertex and to which YH
deformation retracts.

• the union of the images of all reduced edge-paths that begin and end
at the base vertex.

• the union of the images of the finitely many reduced edge-paths that
represent generators of H.

Exercise 12. Prove that the above descriptions are equivalent.

Exercise 13. Show that YH can be constructed from the core by attaching
(infinite, usually) trees to the vertices.

Hints for Exercises 12 and 13: First observe that the third and the fourth
bullet are equivalent, by arguing that the image of a path representing the
product of two elements is contained in the union of the images of paths
representing the factors. Call this the core. Then argue the property from
Exercise 13 (if it fails, find an element whose edge-path is not contained in
the core). Then argue the first two bullets.

So you could construct the whole covering space by adding a bunch of
trees to the last graph. For practice, draw a few edges of these trees. The
core is thus canonically associated to the subgroup H (given a fixed basis
of the underlying free group). It is the topological representative of H. So
when someone tells you: “Let H be a finitely generated subgroup of a free
group Fn...” you should immediately visualize an immersion G → Y as
above.

1The valence of a vertex v is the cardinality of ι−1(v).
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Exercise 14. Suppose H is a finitely generated normal subgroup of Fn. Show
that either H has finite index in Fn or H = {1}.

Exercise 15. Can you always compute the normalizer

N(H) = {γ ∈ Fn|γHγ−1 = H}?

What can you say about the index [N(H) : H]? (Answer: It is always finite,
and bounded by the number of vertices in the graph representing H. Recall
that N(H)/H is the deck group.)

Question 16. Given w ∈ Fn, can you algorithmically decide whether w ∈ H.

Yes! If the reduced word w can be realized by an immersed path in
the core that begins and ends at the base vertex, then w ∈ H. Otherwise
w 6∈ H. E.g., in our example a2ba ∈ H while b 6∈ H (it cannot be drawn
from the base vertex) and a 6∈ H (it can be drawn, but doesn’t close up).

Question 17. Given w ∈ Fn, can you algorithmically decide whether w is
conjugate to an element of H.

Yes! First replace w by its conjugate if necessary so that it is cyclically
reduced (e.g. ababa−1 would be replaced by bab). If w can be realized by an
immersed path in the core that begins and ends at the same (but arbitrary)
vertex, then w can be conjugated into H. Otherwise, the answer is no. (The
reason for passing to the cyclically reduced word is to guarantee that any
lift is contained in the core.) conjugacy class of w can be thought of as an
immersion S1 → Y and the question is whether this lifts to the core. This
is a finite check.

Now some exercises for you.

Exercise 18. Can you tell if H is normal in Fn?

Exercise 19. Given a homomorphism h : Fn → Fm, can you tell if h is
injective, surjective, bijective? Answer: Injective iff there are no folds of the
second kind. Surjective iff the last map is a homeomorphism.

Exercise 20. Show that for every homomorphism h : Fn → Fm there is a
free factorization Fn = A ∗B such that h kills A and is injective on B.

Exercise 21. Show that for every finitely generated H ⊂ Fn there is a sub-
group H ′ ⊂ Fn such that H ⊂ H ′, H is a free factor in H ′, and H ′ has
finite index in Fn. This is called Marshall Hall’s theorem. You can find H ′

algorithmically. Do it for H in our example. Hint: Add some edges to G to
turn an immersion G → Y into a covering map.

Question 22. Can you decide if H has finite index in Fn? Hint: Yes! The
core must be a covering.
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Remark 23. The same argument shows more: If H ⊂ Fn has the property
that for every w ∈ Fn there is k = k(w) > 0 such that wk ∈ H, then H
has finite index in Fn. This is not true for arbitrary groups. For example,
there exist infinite groups (even finitely generated!) where every element
has finite order. The most famous such family of groups are called Burnside
groups.

Exercise 24. This is a generalization of Exercise 21. Show that for every
finitely generated subgroup H < Fn and any g1, · · · , gk ∈ Fn \H there is a
subgroup H ′ such that H < H ′ < Fn, H is a free factor in H ′, H ′ has finite
index in Fn and g1, · · · , gk 6∈ H ′. In particular, Fn satisfies LERF.

Hints, discussion: A group G satisfies LERF (locally extended residually
finite) if for every f.g. H < G and every g ∈ G \ H there is a subgroup
of finite index H ′ in G such that H < H ′ and g 6∈ H (why is one g here
enough?). G is residually finite when this property holds for H = {1}. One
of the issues in 3-manifold topology is whether (say hyperbolic) 3-manifold
fundamental groups are LERF. This would allow the construction of certain
covering spaces where immersed surfaces lift to embeddings. Now for the
hint: Start with the wedge of circles and arcs representing H and the gi’s.
Fold (what else?) until the gadget immerses. Note that the endpoints of the
arcs are different from the basepoint. Complete to a covering map. Done.

3 Nielsen’s generators of Aut(Fn)

The group of all automorphisms of Fn =< a1, · · · , an > is denoted Aut(Fn).
It is perhaps surprising that this group is finitely generated.

Theorem 25 (Nielsen). The following 3 types of automorphisms σ generate
Aut(Fn).

(1) (Permutation of basis elements) σ induces a permutation of a1, · · · , an.

(2) (Sign changes) σ sends each ai either to ai or to a−1

i .

(3) (Change of maximal tree) There is a special basis element ai that is
sent to a±1

i . Every other basis element aj is sent to one of: aj, a
±1

i aj,
aja

±1

i , or a±1

i aja
∓1

i .

Discussion: The first two types generate a finite subgroup, called the
signed permutation group, of order 2nn!. There is quite a bit of redundancy
among these generators.
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Exercise 26. Using Nielsen’s theorem show that Aut(Fn) is generated by the
following 4 automorphisms:

σ1(ai) = ai+1 (indices are taken cyclically).
σ2(a1) = a2, σ2(a2) = a1, σ2(ai) = ai for i > 2.
σ3(a1) = a−1

1
, σ3(ai) = ai for i > 1.

σ4(a1) = a1a2, σ4(ai) = ai for i > 1.

Bernhard Neumann found a two-element generating set for Aut(Fn),
n ≥ 4.

Why is the last type called “change of maximal tree”? To identify π1(G)
with Fn we need some additional data, most important of which is a maximal
tree T ⊂ G. We also choose orientations of the edges outside T and we choose
a bijection between the edges and the bases elements of Fn. Now every closed
edge-path based at the base vertex determines an element of Fn by reading
off the labels of the edges outside T . Changing the bijection corresponds
to type (1) automorphisms, and changing orientations corresponds to type
(2). Now consider changing T : Let e be an edge outside T . Then T ∪ e is
homotopy equivalent to S1, and there is a cycle of edges that contains e.
Let f be an edge of T contained in this cycle, so that T ′ = T ∪ e \ f is a
maximal tree. We can also assume that e and f are compatibly oriented,
so that they determine an orientation of the circle. The T -rule assigns to e
the closed path that from the base vertex travels along T to the circle, then
around the circle, and back to the base vertex. The word read off is f , i.e.
f = e. Now take some ei that is outside both T and T ′ and represents a
basis element with both choices of trees. The T -rule assigns to ei a path that
can be schematically viewed as “Y” with ei connecting the two endpoints at
the top and the base vertex at the bottom. If f is not in Y , then ei 7→ ei.
If f is in the vertical arc pointing up (we may assume this by changing
orientations) then ei 7→ feif

−1. If f is in the north-west arc, then we have
ei 7→ fei, and the north-east case reads ei 7→ eif

−1. Thus we have a type
(3) automorphisms. See an example in Figure 3.

Exercise 27. If T and T ′ are two maximal trees, there is a sequence T =
T0, T1, · · · , Tk = T ′ of maximal trees such that any two consecutive trees
differ in only one edge, as above.

Exercise 28. This is a bit more ambitious. Consider the simplicial complex
whose vertices are non-closed edges of G, and a collection of edges spans a
simplex if their union is a forest. Draw some examples. Can you make a
conjecture about the homotopy type of the complex?

Proof of Theorem 25. Let α : Fn → Fn be an automorphism. Let R be
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a1

a2
a2

a1

Figure 3: Thick lines represent maximal trees. The base vertex is at the
bottom. To find the associated automorphism σ :< a1, a2 >→< a1, a2 >,
compute σ(a1) by first drawing the corresponding loop on the left graph
(up the middle, down on left), translating the loop to the right graph, and
reading the labels, to get σ(a1) = a−1

1
. Similarly, σ(a2) = a2a

−1
1

(up on the
right, down on the left).

the rose corresponding to a1, · · · , an and let X be the rose with subdivided
edges representing α. So the first loop of X represents α(a1) and it is
subdivided into length(α(a1)) edges labeled by a1, · · · , an and their inverses,
and reading off the word α(a1). There is an induced map ρ : X → R. Now
factor this map into the composition of folds. All folds are of the first type
and the last map is a homeomorphism.

Identify π1(X) with Fn using a maximal tree, and identify π1(R) with
Fn. If the orientations are chosen correctly, the map induced by ρ is α.
First suppose that the first fold involves two embedded edges. Change the
maximal tree if necessary to arrange that the first fold takes place in T .
Then the image of T is a maximal tree and the induced homomorphism is
identity. Then change the tree again etc. If a fold involves an embedded
edge and a loop, arrange that the embedded edge is in T – the induced
homomorphism is of type (3). At the end we have a homeomorphism and
the induced map in π1 is a signed permutation.

Exercise 29. Let F2 =< x, y >. Show that every automorphism F2 → F2

sends the commutator [x, y] = xyx−1y−1 to an element that is conjugate
to either [x, y] or to [x, y]−1. Hint: Check that this holds for the Nielsen
generators. Info: There is nothing comparable in higher rank.

Exercise 30. It is a fact from surface topology that a homotopy equiva-
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lence X → Y between two compact connected surfaces which induces a
homeomorphism ∂X → ∂Y is homotopic to a homeomorphism X → Y .
Using this fact and the previous exercise, show that for every automorphism
h : F2 → F2 there is a homeomorphism of the torus with a disk cut out that
in π1 induces an automorphism conjugate to h (we don’t have basepoints,
so getting h up to conjugacy is the best we can hope for). Hint: Torus
with a disk cut out is obtained from the wedge of two circles by gluing an
annulus along one boundary circle and with the commutator as attaching
map. Extend the map to the annulus....

Exercise 31. Find explicit homeomorphisms that correspond to the Nielsen
generators. That’s another way to prove the statement of Exercise 30. Hint:
Isometries (with respect to *some* metric) or Dehn twists.

4 Intersections

Given two subgroups H1, H2 how do you compute their intersection? Sup-
pose fi : Gi → Y is an immersion that representsHi (i = 1, 2). The pull-back
of f1, f2 is a pair g1 : G0 → G1 and g2 : G0 → G2 of morphisms of graphs
such that f1g1 = f2g2 and characterized by the universal property: For ev-
ery pair φ1 : G′ → G1, φ2 : G′ → G2 of morphisms such that f1φ1 = f2φ2

there is a unique morphism φ : G′ → G0 such that g1φ = φ1 and g2φ = φ2.

G′

G0 G1

G2 Y

φ1

f1g2

f2

g1
φ2

φ

From the universal property it is easy to see that pull-backs are unique
(if they exist). The existence is shown by the usual direct construction: A
vertex of G0 is a pair (v1, v2) with vi a vertex of Gi such that f1(v1) = f2(v2).
Similarly, an (oriented) edge of G0 s a pair (e1, e2) with ei an edge of Gi and
with f1(e1) = f2(e2). The involution is defined by (e1, e2) = (e1, e2) and
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ι(e1, e2) = (ι(e1), ι(e2)). Maps g1 : G0 → G1 and g2 : G0 → G2 are induced
by the projections to the first and second coordinates.

Exercise 32. Check that this is really a graph and that it satisfies the defi-
nition of the pull-back.

If vi is the base vertex of Gi that maps to the base vertex of Y , we
declare (v1, v2) the base vertex of G0.

Proposition 33. If f1, f2 are immersions, so are g1, g2. In that case, the
image in π1 of f1g1 = f2g2 : G0 → Y equals the intersection of the images
in π1 of f1 and f2.

Proof. Exercise. Use the universal property for G′ an arc.

As an example, consider H1, H2 ⊂ F2 =< a, b > given by H1 =<
a2, ba >, H2 =< ba, b3aba >. First, using folding, find the core repre-
sentatives fi : Gi → Y of Hi. Then construct the pull-back. See Figure
4.

f2
g1

g2

1 2

x y z w

1y

2z

1w

1x

2y

1z

2w

f1

2x

The base vertices are 2, x, and 2x. We read off that H1 ∩H2 =< ba >.
What is the significance of the other circle in the pull-back? Well, if our

base vertices were 1, w, and 1w we would be looking at the other circle. The
change of base vertices corresponds to conjugating the subgroups. Specifi-
cally, we see that aH1a ∩ abaHaba =< ab >. This is because a is a path in
G1 from 1 to 2, and aba is a path in G2 from w to x.
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What if we used a different path between the vertices, e.g. b from 1 to
2? Well, we would get the same conjugate: bH1b = aH1a, since ba ∈ H1.

Here is the theorem that can be proved using pull-backs.

Theorem 34. Suppose H1, H2 are two (free) subgroups of Fn of finite rank.

(1) The intersection H1 ∩H2 has finite rank.

(2) There are only finitely many double cosets H1gH2 ∈ H1\G/H2 such
that g−1H1g ∩H2 6= {1}.

(1) This is known as Howson’s theorem.
Regarding (2), note that if γ = h1gh2 for some h1 ∈ H1 and h2 ∈

H2 then γ−1H1γ ∩H2 = h−1
2

(g−1H1g ∩H2)h2. Furthermore, simultaneous
conjugation does not change the rank of the intersection: g−1H1g∩g

−1H2g =
g−1(H1∩H2)g. To disallow this simultaneous conjugation, we chose to keep
H2 fixed, and further, we consider only representatives of double cosets.

Proof. (1) follows from the fact that pull-backs of finite graphs are finite.
(2) Let Gi → Y be immersions representing Hi (i = 1, 2) and let G̃i

be the covering space of Y corresponding to the subgroup Hi. Thus Gi

is the core of G̃i. Let G̃0 be the pull-back of G̃1 → Y and G̃2 → Y .
Thus G0 ⊂ G̃0. Note that G̃0 may have (and usually does) infinitely many
components. However, using the universal property of pull-backs, it is easy
to check that every component of G̃0 that is not contractible intersects G0

nontrivially, and in fact any immersed loop in G̃0 is contained in G0. In
particular, only finitely many components of G̃0 are not trees, and each of
these components has finite rank.

Let H ′
1 and H ′

2 be two conjugates of H1 and H2, say by w1 and w2

respectively. Developing wi in G̃i from the basepoint produces a new base-
point xi. The component of G̃0 that contains (x1, x2) computes H ′

1 ∩ H ′
2.

It remains to observe that if (x1, x2) and (x′1, x
′
2) obtained from (w′

1, w
′
2)

belong to the same component of G̃0, then there is w ∈ Fn (coming from a
path in G̃0 joining (x1, x2) with (x′1, x

′
2)) such that

hi := wiww
′−1

i ∈ Hi i = 1, 2

which implies that

w1w
−1
2

= (h1w
′
1w

−1)(ww′−1
2

h−1
2

) = h1w
′
1w

′−1
2

h−1
2

and w′
1w

′−1
2

are in the same double coset. Thus the pair (Hw1

1
, Hw2

2
) is

related to (H
w′

1

1
, H

w′

2

2
) by simultaneous conjugation and then changing the

double coset representative.
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It is an interesting question to estimate the rank of H1 ∩H2 in terms of
the ranks of H1 and H2. We see immediately that the ambient free group
Fn plays no role since we could embed it into another free group, e.g. F2.
To compute the rank of a graph, we make use of the following fact.

Exercise 35. Let G be a finite graph. Then the quantity

−
1

2
V1 +

1

2
V3 + V4 +

3

2
V5 + · · ·

equals the negative of the Euler characteristic of G, i.e. rank(G)− 1 when
G is connected.

Now consider the pull-back diagram corresponding to H1, H2. For sim-
plicity, we take the ambient group to be F2, so all vertices have valence ≤ 4.
Denote by V3, V4 the numbers of valence 3 and 4 vertices in G1 and by V ′

3 , V
′
4

the analogous numbers for G2. Consider the core of the component of the
pull-back that contains the base vertex. How many vertices of what valence
can we have there? Well, the worst case is that we have V4V

′
4 vertices of

valence 4 and V3V
′
3 +V3V

′
4 +V4V

′
3 vertices of valence 3. We need to estimate

the quantity

V4V
′
4 +

1

2
(V3V

′
3 + V3V

′
4 + V4V

′
3).

It is clearly estimated above by

2(V4 +
1

2
V3)(V

′
4 +

1

2
V ′
3).

So we proved:

Theorem 36. If H1 ∩H2 6= {1} then

rank(H1 ∩H2)− 1 ≤ 2(rank(H1)− 1)(rank(H2)− 1).

This theorem is known as the Hanna Neumann inequality. In the same
paper, she states the Hanna Neumann Conjecture, that the factor 2 can be
dropped. In fact, the above proof shows that the sum

∑
(rank(H ′

1 ∩H2)− 1)

over all distinct conjugates H ′
1 of H1 with H ′

1 ∩ H2 6= {1} is bounded
by 2(rankH1 − 1)(rankH2 − 1). It was conjectured by Walter Neumann
(Hanna’s son) that 2 can be removed in this stronger assertion. Update
2014: The more general conjecture was proved independently by Joel Fried-
man and by Igor Mineyev.

To finish, another exercise.
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Exercise 37. A subgroup H of a group Γ is said to be malnormal if

γ ∈ Γ, h ∈ H, γhγ−1 ∈ H ⇒ γ ∈ H or h = 1.

Show that H ⊂ Fn is malnormal iff the pull-back diagram for the pair
(H,H) has at most one component that is not a tree. E.g. < a, bab > is not
malnormal.

5 Todd-Coxeter

Algorithmic questions for general groups tend to be unsolvable. Let

< a, · · · , b|r, · · · , s >

be a finite presentation of a group G. There are three famous questions, due
to Dehn, that one tries to solve:

1. (The Word Problem) Is there an algorithm that for a given a word w
in a, a, · · · , b, b decides whether w is trivial in G?

2. (The Conjugacy Problem) Is there an algorithm that for two words
w1, w2 decides whether they are conjugate in G?

3. (The Isomorphism Problem) Is there an algorithm that decides whether
a given finite presentation determines the trivial group? More generally, is
there an algorithm that decides whether two given finite presentations de-
termine isomorphic groups?

Novikov (1955) constructed an example of a f.p. group with unsolvable
word problem. Then Adyan (1955) proved the following decisive result:
Consider a property P of groups with the following features:

a) If G ∼= G′ and G has P , so does G′,

b) If H is a subgroup of G and G has P , so does H,

c) The free group Fn does not satisfy P for some n, and

d) There exists a group that satisfies P .

Then there is no algorithm that decides whether a given finite presentation
determines a group that satisfies P .

For example “being the trivial group”, or “being abelian” etc. are such
properties.

However, there is a “process” that can be applied to a finite presentation,
that attempts to construct the Cayley graph of the group. It will terminate
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iff the group is finite. Even when the group is infinite and “geometric” it
will give better and better approximations to the Cayley graph. There is a
lot of current research that attempts to understand “geometric” classes of
groups, e.g. hyperbolic groups (Gromov, 1985), CAT(0) groups etc.

The process, known as the Todd-Coxeter process, can be described in
terms of folding (Stallings-Wolf, 1987).

First, recall what the Cayley graph is. Let F = π1(Y ) be the free group
on a, · · · , b, the fundamental group of the rose Y . Let R be the smallest
normal subgroup of F that contains r, · · · , s. Thus G = F/R, by definition.
Let X be the covering space of Y corresponding to R ⊂ F . Then X is the
Cayley graph of G. This is a regular covering space and the deck group can
be identified with G. After choosing a base vertex, labeled 1 ∈ G, the vertex
set is in a natural 1-1 correspondence with the elements of G: for a vertex
v choose a path α from 1 to v and project it to Y . The projection is a loop
and it determines an element of G. Furthermore, the (oriented) edges of X
have labels a, a, · · · , b, b, and if an edge labeled a goes from a vertex labeled
g to the vertex labeled g′, then ga = g′. This gives another (more standard)
description of the Cayley graph.

Here is then the procedure:

1. Start with the rose Y with oriented petals labeled a, · · · , b.

2. Let Z be the rose with one petal for each relation r, · · · , s. The petal
labeled r (say) is subdivided into length(r) edges that are labeled
according to r (and similarly for other relations). The labeling defines
a morphism f : Z → Y . Now run the folding algorithm to replace f
by an immersion f1 : Z1 → Y . The image in π1, call it R1, did not
change.

3. Take two copies of Z1 and identify a pair of vertices. Convert the resulting
morphism to an immersion f2 : Z2 → Y with the image R2 in π1. Note
that R2 is generated by the union of two conjugates of R1.

4. Continue this process indefinitely.

The aim is to make Zi → Y look more and more like a covering map in a
larger and larger neighborhood of 1. When G is finite, the procedure can be
made to terminate (with clever choices of vertices that are identified) with
a regular covering space, which is the Cayley graph of G.

The process can be generalized to the situation where H is a subgroup
of G and the covering space being built corresponds to the group generated
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by R∪H. The procedure will terminate when H has finite index in G. This
is called the Todd-Coxeter coset enumeration process. There are programs
on the internet, notably GAP, that will perform this process free of charge.
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