
Algebraic numbers

Here we will see in a sequence of exercises how to show that certain numbers
are algebraic. Recall that α ∈ C is an algebraic number if it is a root of a
polynomial with integer coefficients. If in addition the polynomial can be
chosen to be monic then α is an algebraic integer.

For example,
√
2 and 3

√
5 are algebraic integers, roots of polynomials

x2−2 and x3−5 respectively. On the other hand, 1

2
is an algebraic number,

but not an algebraic integer.

Exercise 1. If α 6= 0 is an algebraic number, show that −α, 1

α
are also

algebraic. Also show that rational multiples of α are algebraic.

What’s not obvious is that numbers like
√
2+

√
3+

√
5+

√
7 are algebraic.

If there aren’t too many roots you can square and simplify, but with 4 roots
it seems to get out of hand (you can still pull it off though!). But then
imagine

√
2 + 3

√
3 + 5

√
5 + 7

√
7!

If z1, · · · , zm are complex numbers, define VQ = VQ(z1, · · · , zm) as the
set of all rational linear combinations of z1, · · · , zm.

Exercise 2. Show that VQ is a finite dimensional vector space over Q.

We are particularly interested in finding VQ such that the given α ∈ C

acts on it by multiplication.

Definition 3. VQ is α-invariant if v ∈ VQ implies αv ∈ VQ.

Exercise 4. Prove that VQ(1,
√
2) is

√
2-invariant. Prove that VQ(1,

3
√
5, 3

√
5
2
)

is 3
√
5-invariant.

Exercise 5. Suppose that for every j we have αzj ∈ VQ. Prove that VQ is
α-invariant.

Exercise 6. If α is a root of the integral polynomial anx
n + an−1x

n−1 +
· · ·+ a1x+ a0, show that VQ(1, α, α

2, · · · , αn−1) is α-invariant.

This exercise proves one half of the following theorem.

Theorem 7. α ∈ C is an algebraic number if and only if there exists some
nonzero VQ (finite dimensional rational vector subspace of C) which is α-
invariant.

For the second half we will fix a basis of VQ, say w1, · · · , wn. Let M be
the n× n matrix of the linear map VQ → VQ given by v 7→ αv.
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Exercise 8. Prove that this is a linear map.

Exercise 9. Compute M for the examples above. Also compute the char-
acteristic polynomial of M .

Now M has a characteristic polynomial, which has rational coefficients
(why?) and degree n. Recall the Cayley-Hamilton theorem, which says that
M satisfies its characteristic polynomial. Thus we have an identity

Mn + an−1M
n−1 + · · ·+ a1M + a0I = 0

with ai rational.

Exercise 10. Show that αn + an−1α
n−1 + · · ·+ a1α+ a0 = 0

As a hint, what is the matrix of the linear map represented by the
multiplication by the number on the left hand side?

Now this proves that α is algebraic, by clearing the denominators. The
theorem is then proved.

Here is the main application.

Theorem 11. If α, β are two algebraic numbers, then so are α + β and
αβ. As a consequence, the set of algebraic numbers in C is a field, called
algebraic closure of Q, and is denoted Q.

Exercise 12. Suppose VQ = VQ(z1, · · · , zm) and WQ = VQ(w1, · · · , wk) are
α-invariant and β-invariant nontrivial finite dimensional rational spaces as
above, respectively. Form the new space

UQ = VQ(z1w1, z1w2, · · · , zmwk)

and show that it is both α-invariant and β-invariant. Deduce the theorem.

Exercise 13. For every n = 1, 2, 3, · · · the number cos 2π
n

is algebraic.

Hint: it is the average of two roots of xn − 1.

Remark 14. A similar discussion works for algebraic integers. The dif-
ference is that now we have to work with the space VZ of integral linear
combinations of the given complex numbers. Then we have to use linear
algebra over Z to find an integral basis, and see that the entries in M and
the coefficients of the characteristic polynomial are all in Z. The conclusion
is that if α, β are algebraic integers, so are α + β and αβ. It is no longer
true that α 6= 0 alg. integer implies 1

α
is an algebraic integer (think of 1

2
).

So the conclusion is that the set of algebraic integers is a subring of C.
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