Algebraic numbers

Here we will see in a sequence of exercises how to show that certain numbers are algebraic. Recall that $\alpha \in \mathbb{C}$ is an algebraic number if it is a root of a polynomial with integer coefficients. If in addition the polynomial can be chosen to be monic then α is an algebraic integer.

For example, $\sqrt{2}$ and $\sqrt[3]{5}$ are algebraic integers, roots of polynomials $x^{2}-2$ and $x^{3}-5$ respectively. On the other hand, $\frac{1}{2}$ is an algebraic number, but not an algebraic integer.

Exercise 1. If $\alpha \neq 0$ is an algebraic number, show that $-\alpha, \frac{1}{\alpha}$ are also algebraic. Also show that rational multiples of α are algebraic.

What's not obvious is that numbers like $\sqrt{2}+\sqrt{3}+\sqrt{5}+\sqrt{7}$ are algebraic. If there aren't too many roots you can square and simplify, but with 4 roots it seems to get out of hand (you can still pull it off though!). But then imagine $\sqrt{2}+\sqrt[3]{3}+\sqrt[5]{5}+\sqrt[7]{7}$!

If z_{1}, \cdots, z_{m} are complex numbers, define $V_{\mathbb{Q}}=V_{\mathbb{Q}}\left(z_{1}, \cdots, z_{m}\right)$ as the set of all rational linear combinations of z_{1}, \cdots, z_{m}.

Exercise 2. Show that $V_{\mathbb{Q}}$ is a finite dimensional vector space over \mathbb{Q}.
We are particularly interested in finding $V_{\mathbb{Q}}$ such that the given $\alpha \in \mathbb{C}$ acts on it by multiplication.

Definition 3. $V_{\mathbb{Q}}$ is α-invariant if $v \in V_{\mathbb{Q}}$ implies $\alpha v \in V_{\mathbb{Q}}$.
Exercise 4. Prove that $V_{\mathbb{Q}}(1, \sqrt{2})$ is $\sqrt{2}$-invariant. Prove that $V_{\mathbb{Q}}\left(1, \sqrt[3]{5}, \sqrt[3]{5}^{2}\right)$ is $\sqrt[3]{5}$-invariant.

Exercise 5. Suppose that for every j we have $\alpha z_{j} \in V_{\mathbb{Q}}$. Prove that $V_{\mathbb{Q}}$ is α-invariant.

Exercise 6. If α is a root of the integral polynomial $a_{n} x^{n}+a_{n-1} x^{n-1}+$ $\cdots+a_{1} x+a_{0}$, show that $V_{\mathbb{Q}}\left(1, \alpha, \alpha^{2}, \cdots, \alpha^{n-1}\right)$ is α-invariant.

This exercise proves one half of the following theorem.
Theorem 7. $\alpha \in \mathbb{C}$ is an algebraic number if and only if there exists some nonzero $V_{\mathbb{Q}}($ finite dimensional rational vector subspace of \mathbb{C}) which is α invariant.

For the second half we will fix a basis of $V_{\mathbb{Q}}$, say w_{1}, \cdots, w_{n}. Let M be the $n \times n$ matrix of the linear map $V_{\mathbb{Q}} \rightarrow V_{\mathbb{Q}}$ given by $v \mapsto \alpha v$.

Exercise 8. Prove that this is a linear map.
Exercise 9. Compute M for the examples above. Also compute the characteristic polynomial of M.

Now M has a characteristic polynomial, which has rational coefficients (why?) and degree n. Recall the Cayley-Hamilton theorem, which says that M satisfies its characteristic polynomial. Thus we have an identity

$$
M^{n}+a_{n-1} M^{n-1}+\cdots+a_{1} M+a_{0} I=0
$$

with a_{i} rational.
Exercise 10. Show that $\alpha^{n}+a_{n-1} \alpha^{n-1}+\cdots+a_{1} \alpha+a_{0}=0$
As a hint, what is the matrix of the linear map represented by the multiplication by the number on the left hand side?

Now this proves that α is algebraic, by clearing the denominators. The theorem is then proved.

Here is the main application.
Theorem 11. If α, β are two algebraic numbers, then so are $\alpha+\beta$ and $\alpha \beta$. As a consequence, the set of algebraic numbers in \mathbb{C} is a field, called algebraic closure of \mathbb{Q}, and is denoted $\overline{\mathbb{Q}}$.

Exercise 12. Suppose $V_{\mathbb{Q}}=V_{\mathbb{Q}}\left(z_{1}, \cdots, z_{m}\right)$ and $W_{\mathbb{Q}}=V_{\mathbb{Q}}\left(w_{1}, \cdots, w_{k}\right)$ are α-invariant and β-invariant nontrivial finite dimensional rational spaces as above, respectively. Form the new space

$$
U_{\mathbb{Q}}=V_{\mathbb{Q}}\left(z_{1} w_{1}, z_{1} w_{2}, \cdots, z_{m} w_{k}\right)
$$

and show that it is both α-invariant and β-invariant. Deduce the theorem.
Exercise 13. For every $n=1,2,3, \cdots$ the number $\cos \frac{2 \pi}{n}$ is algebraic.
Hint: it is the average of two roots of $x^{n}-1$.
Remark 14. A similar discussion works for algebraic integers. The difference is that now we have to work with the space $V_{\mathbb{Z}}$ of integral linear combinations of the given complex numbers. Then we have to use linear algebra over \mathbb{Z} to find an integral basis, and see that the entries in M and the coefficients of the characteristic polynomial are all in \mathbb{Z}. The conclusion is that if α, β are algebraic integers, so are $\alpha+\beta$ and $\alpha \beta$. It is no longer true that $\alpha \neq 0$ alg. integer implies $\frac{1}{\alpha}$ is an algebraic integer (think of $\frac{1}{2}$). So the conclusion is that the set of algebraic integers is a subring of \mathbb{C}.

