Question 1. Show that multiplication is well defined in \mathbb{Z}/m, i.e. if $x \equiv x'$ and $y \equiv y'$ then $xy \equiv x'y'$.

Proof. Suppose $x \equiv x'$ and $y \equiv y'$ modulo m. Then there exist $a, b \in \mathbb{Z}$ such that $x' = x + am$ and $y' = y + bm$. Hence,

$$x'y' - xy = (x + am)(y + bm) - xy = xbm + yam + abm^2 = (xb + ya + abm) \cdot m \equiv 0 \pmod{m},$$

which implies that $x'y' \equiv xy$ modulo m. \square

Question 2. Let G be a group and X a subset of G. Let $\langle X \rangle$ be the intersection of all subgroups of G that contain X. Show that $\langle X \rangle$ is in fact a subgroup, called subgroup generated by X. If $G = GL_n(\mathbb{R})$ and X is the set of all elementary matrices, what subgroup is $\langle X \rangle$?

Proof. First note symbolically we can write

$$\langle X \rangle = \bigcap_{X \subset H \leq G} H.$$

We would like to show $\langle X \rangle$ is a subgroup of G. (Note: In fact, a more general fact holds: an intersection of collection of subgroups of a group is again a subgroup. The proof is essentially the same as below.)

- (Identity) $1_G \in \langle X \rangle$ since $1_G = 1_H \in H$ for every subgroup $H \supset X$ of G.
- (Inverse) Also, for any $a \in \langle X \rangle$ we have that $a \in H$ for every $H \supset X$. Since H itself is a subgroup, $a^{-1} \in H$ for every $H \supset X$. Hence, $a^{-1} \in \langle X \rangle$.
- (Closure) Similarly, for any $a, b \in \langle X \rangle$, it follows that $ab \in H$ for every subgroup $H \supset X$, proving $ab \in \langle X \rangle$.

These prove $\langle X \rangle$ is indeed a subgroup of H.

Now set $G = GL_n(\mathbb{R})$, and X to be the set of all elementary matrices. We claim $\langle X \rangle$ is in fact the whole group $GL_n(\mathbb{R})$. We have $\langle X \rangle \subset GL_n(\mathbb{R})$ by definition, so it suffices to prove $\langle X \rangle \supset GL_n(\mathbb{R})$. For this, pick $A \in GL_n(\mathbb{R})$. Since an invertible matrix is a product of elementary matrices (Theorem 1.2.16), it follows that $A \in \langle X \rangle$, concluding the proof. \square

Question 3 (Artin 2.2.4). In which of the following cases is H a subgroup of G?

(a) $G = GL_n(\mathbb{C})$ and $H = GL_n(\mathbb{R})$.
(b) $G = \mathbb{R}^\times$ and $H = \{1, -1\}$.
(c) $G = \mathbb{Z}^+$ and H is the set of positive integers.
(d) $G = \mathbb{R}^\times$ and H is the set of positive reals.
(e) $G = GL_2(\mathbb{R})$ and H is the set of matrices $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$, with $a \neq 0$.

1
Solution. (a,b,d) \(H \leq G \).
(c) \(H \not\leq G \). Note \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \notin H \). Also \(H \not\leq G \) either, as \(\det \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} = 0 \). //

Question 4 (Artin 2.4.7). Let \(x \) and \(y \) be elements of a group \(G \). Assume that each of the elements \(x, y, \) and \(xy \) has order 2. Prove that the set \(H = \{1, x, y, xy\} \) is a subgroup of \(G \), and that it has order 4.

Proof. To show \(H \leq G \), first note \(1 \in H \). Also, it is closed under taking inverses: \(x^{-1} = x, \ y^{-1} = y, \ (xy)^{-1} = xy \),

because \(x, y \) and \(xy \) are all of order 2. One way to see \(H \) is closed under multiplication is to draw the multiplication table(See Section 2.1 of Artin) for \(H \): Here note that since \(xyxy = 1, \)

\[
\begin{array}{c|cccc}
 & 1 & x & y & xy \\
\hline
1 & 1 & x & y & xy \\
x & x & 1 & y & x \\
y & y & yx & 1 & yxy \\
xy & xy & xyx & x & 1 \\
\end{array}
\]

it follows that \(xyx = y^{-1} = y \) and \(yxy = x^{-1} = x \). Also \(yx = x^{-1}y^{-1} = xy \). Hence after substituting these in the table, \(H \) is closed under the multiplication, showing \(H \leq G \).

Now to show \(H \) is of order 4, it suffices to show \(1, x, y \) and \(xy \) are distinct. First, \(x, y \) and \(xy \) are distinct from \(1 \) as they are of order 2. Next, we see \(x, y \) are different from \(xy \), otherwise we get \(x = 1 \) or \(y = 1 \). Finally, \(x \neq y \), otherwise \(xy = x^2 = 1 \) contradicting the order of \(xy \) is 2. Therefore, \(H \) has order 4. \(\square \)

Question 5 (Artin 2.4.9). How many elements of order 2 does the symmetric group \(S_4 \) contain?

Solution. The order 2 elements in \(S_4 \) are exactly 2-cycles and \((2,2)\)-cycles. (See Section 1.5 of Artin.) The number of 2-cycles is \(\binom{4}{2} = 6 \) and that of \((2,2)\)-cycles is \(\binom{4}{2}/2 = 3 \). Therefore, the total number of order 2 elements is \(6 + 3 = 9 \). //

Question 6 (Artin 2.9.7). Determine the order of each of the matrices \(A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \) and \(B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \) when the matrix entries are interpreted modulo 3.

Solution. One can check that \(A^n = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \), so \(A \) is of order 3 in \(GL_2(\mathbb{Z}/3) \), the set of invertible matrices with entries in \(\mathbb{Z}/3 \).

On the other hand, \(B^n = \begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} \) where \(F_n \) is the \(n \)-th term of the Fibonacci sequence defined as \(F_n = F_{n-1} + F_{n-2} \) for \(n \geq 2 \) and \(F_0 = 0, F_1 = 1 \). Using this, one can compute that \(B^8 = \begin{bmatrix} 34 & 21 \\ 21 & 13 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in GL_2(\mathbb{Z}/3) \), and \(B^m \neq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \in GL_2(\mathbb{Z}/3) \) for \(m < 8 \), proving \(B \) is of order 8. //
Question 7 (Bonus question). Construct a group G and elements of $x, y \in G$ of order 2 such that xy has order n for a given integer $n \geq 1$.

Proof. A typical order 2 element to think of is a reflection. The key idea is to observe that *the composition of two parallel reflections is a translation.* (Two non-parallel reflections compose into a rotation.) Using this, we can construct such G. Namely, first consider a real line \mathbb{R}. Let x be the reflection at the point $\frac{1}{4}$, and y be the reflection at the point $-\frac{1}{4}$. Then we claim that xy is a translation by $+1$. (Here we follow the function composition notation; first apply y, and then x.) Indeed, for any $r \in \mathbb{R}$, we have

$$xy(r) = x(-\frac{1}{2} - r) = \frac{1}{2} - (-\frac{1}{2} - r) = 1 + r.$$

Hence, if the order of xy is given to be infinity, we can just let x, y as such reflections on \mathbb{R}. (In this case $\langle x, y \rangle \cong D_\infty$, called the *infinite dihedral group*.)

However, if n is a finite positive integer, we can make \mathbb{R} into a circle \mathbb{R}/\sim by declaring the equivalence relation $r \sim r + n$ for all $r \in \mathbb{R}$. Then \mathbb{R}/\sim becomes a circle with circumference n, so the n times of $+1$-translation becomes the identity. Now we achieved to find the elements x, y of order 2 such that xy is of order n, we declare $G = \langle x, y \rangle$, the group generated by x and y. (See Question 2). In fact, in this case $G \cong D_{2n}$, the dihedral group of order $2n$. □