Here is a solution to #35: If A is a strictly upper triangular $n \times n$ matrix, then $A^n = 0$.

Strictly upper triangular means that entries a_{ij} satisfy

$$a_{ij} = 0$$
 when $i - j \ge 0$

Most of you noticed that higher powers will necessarily have more and more diagonals with zeros. Formally, we make

Claim. For $r = 1, 2, \dots, n$ the entries b_{ij} of A^r satisfy

$$b_{ij} = 0$$
 when $i - j \ge 1 - r$

When r = 1 this is true by assumption on A, and when we prove it for r = n it will follow that $A^n = 0$ since every entry b_{ij} of an $n \times n$ matrix satisfies $i - j \ge 1 - n$.

It remains to prove the Claim by induction. For the inductive step $A^{r+1} = A^r A$, denote the entries of A^{r+1} by c_{ik} , the entries of A^r by b_{ij} and the entries of A by a_{ik} . Thus

$$c_{ik} = \sum_{j=1}^{n} b_{ij} a_{jk}$$

and we are assuming $a_{jk} = 0$ when $j-k \ge 0$ and $b_{ij} = 0$ when $i-j \ge 1-r$. We will show that when $i-k \ge 1-(r+1) = -r$ then every summand in the formula for c_{ik} is 0. For this, we only have to see that for every j either $j-k \ge 0$ or $i-j \ge 1-r$. So suppose that both of these fail, i.e. $j-k \le -1$ and $i-j \le -r$. Adding up gives $i-k \le -1-r$ contradicting the assumption $i-k \ge -r$.