Math 2270 Homework, due Oct 21, 2015.

(1) Let U and V be vector spaces with bases u_{1}, \cdots, u_{n} and v_{1}, \cdots, v_{m} respectively. The product

$$
U \times V=\{(u, v) \mid u \in U, v \in V\}
$$

is a vector space under the operations $(u, v)+\left(u^{\prime}, v^{\prime}\right)=\left(u+u^{\prime}, v+v^{\prime}\right)$ and $r(u, v)=(r u, r v)$. Show that the vectors

$$
\left(u_{1}, 0\right), \cdots,\left(u_{n}, 0\right),\left(0, v_{1}\right), \cdots,\left(0, v_{m}\right)
$$

form a basis of $U \times V$. Deduce that

$$
\operatorname{dim} U \times V=\operatorname{dim} U+\operatorname{dim} V
$$

For example, $\operatorname{dim} K^{m} \times K^{n}=\operatorname{dim} K^{m+n}=m+n$.
(2) Let W be the subspace of \mathbb{R}^{3} spanned by the vector $(1,2,3)$. Find an orthogonal basis for the orthogonal complement W^{\perp}.
(3) Consider the linear system

$$
\begin{gathered}
x-2 y-z=0 \\
x+y+z=0
\end{gathered}
$$

Write the system in the form $A x=0$ for a matrix A. What is the rank of A, what is the dimension of $\operatorname{Ker}(A)$, and what is the dimension of the solution set? Explicitly find the solution set using the reduced echelon form.
(4) p. $94 \# 10$ (b)
(5) p. $94 \# 11$
(6) p. $138 \# 1$.

