Math 2270 Homework, due Sept 2, 2015.

(1) In class we saw that $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a field. Generalizing this, assume that $c \in \mathbb{Q}$, that $\gamma \in \mathbb{R}-\mathbb{Q}$ and $\gamma^{2}=c$. Prove that

$$
\mathbb{Q}(\gamma)=\{a+b \gamma \mid a, b \in \mathbb{Q}\}
$$

is a field. Thus e.g. $\mathbb{Q}(\sqrt{5})$ is a field.
(2) From the axioms for a vector space show that $c \cdot \vec{O}=\vec{O}$ for all $c \in K$.
(3) From the axioms for a vector space show that if $c \cdot u=\vec{O}$ then $c=0$ or $u=\vec{O}$.
(4) Check that

$$
W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x=y \text { and } y=5 z\right\}
$$

is a subspace of \mathbb{R}^{3}. Find a generating set for W.
(5) Express $(0,0,1) \in \mathbb{R}^{3}$ as a linear combination of $v_{1}=(1,1,1), v_{2}=(0,1,-1)$ and $v_{3}=(0,1,0)$.
(6) Show that the functions $f(t)=\cos t$ and $g(t)=\sin t$ are linearly independent in the vector space of all functions $\mathbb{R} \rightarrow \mathbb{R}$.
(7) Suppose that two vectors $v, w \in V$ are linearly dependent and that $w \neq \vec{O}$. Show that $v=c w$ for some $c \in K$.
(8) Show that the vectors $v_{1}=(a, b)$ and $v_{2}=(c, d)$ in \mathbb{R}^{2} are linearly independent if and only if $a d-b c \neq 0$. Hint: Use the previous problem.

