Complex and Tropical Nullstellensätze

Undergrad Colloquium, October 2017

The **complex numbers** \(\mathbb{C} \) are an algebraically closed field. That is,

(*) Every non-constant polynomial in one variable:

\[f(x) \in \mathbb{C}[x] \]

has a complex root. Iterating this, \(f(x) \) factors completely:

\[f(x) = c(x - r_1) \cdots (x - r_d) \]

Example. The polynomials \(f(x) = x^d - c \ (c \neq 0) \) have distinct roots:

\[f(x) = (x - c^\frac{1}{d})(x - \omega c^\frac{1}{d}) \cdots (x - \omega^{d-1} c^\frac{1}{d}) \]

where \(c^\frac{1}{d} = r^\theta e^{i\theta/d} \) if \(c = re^{i\theta} \) and \(\omega = e^{2\pi i/d} \) is the basic \(d \)th root of 1.

There are algebraic, analytic and topological proofs of this fact, but in this talk I want to explore the implications of this for systems of polynomial equations. In one variable, this is:

(**) If \(f_1, \ldots, f_m \in \mathbb{C}[x] \) share no collective common roots, then:

\[1 = \sum g_i f_i \]

can be solved with polynomials \(g_1, \ldots, g_m \in \mathbb{C}[x] \).

Proof. Let \(h(x) = \gcd(f_1(x), \ldots, f_m(x)) \). If \(h(x) \) is not constant, then \(f_1, \ldots, f_m \) have a common root! The rest is Euclid’s algorithm.

Nullstellensatz. (***) is also true for polynomials in \(n \) variables.

Remark. Euclid’s algorithm is not available in more variables.

Background. The span of vectors \(v_1, \ldots, v_m \) in a vector space \(V \) is:

\[\langle v_1, \ldots, v_m \rangle = \left\{ \sum c_i v_i \in V \mid c_i \in \mathbb{C} \text{ are arbitrary scalars} \right\} \subset V \]

and by the fundamental theorem of linear algebra,

\[\langle v_1, \ldots, v_m \rangle = \ker(V \mapsto V/\langle v_1, \ldots, v_m \rangle) \]

is the kernel subspace of the map to the quotient space.

Similarly, the span of polynomials \(f_1, \ldots, f_m \in \mathbb{C}[x_1, \ldots, x_n] \) is:

\[\langle f_1, \ldots, f_m \rangle = \left\{ \sum g_i f_i \mid g_i \in \mathbb{C}[x_1, \ldots, x_n] \right\} \]

which is an *ideal* in the ring of polynomials, and once again:

\[\langle f_1, \ldots, f_m \rangle = \ker(\mathbb{C}[x_1, \ldots, x_n] \to \mathbb{C}[x_1, \ldots, x_n]/\langle f_1, \ldots, f_m \rangle) \]

is the kernel of the map to the quotient ring. But this is not a subring.
Ideals. Ideals in $\mathbb{C}[x_1, \ldots, x_n]$ are subspaces that are also closed under multiplication by the variables x_1, \ldots, x_n, hence by multiplication by all polynomials. Like subspaces of \mathbb{C}^n, all ideals in $\mathbb{C}[x_1, \ldots, x_n]$ have a finite generating set (the Hilbert Basis Theorem).

Example. The “vanishing ideal” at a subset $S \subset \mathbb{C}^n$ is the ideal:

$$I(S) = \{ f \in \mathbb{C}[x_1, \ldots, x_n] \mid f(s) = 0 \text{ for all } s \in S \}$$

By Zorn’s Lemma, an ideal that is not equal to $\mathbb{C}[x_1, \ldots, x_n]$ is always contained in a maximal ideal I whose quotient is a field:

$$\mathbb{C}[x_1, \ldots, x_n]/I = K$$

Conversely, the kernel of a map from $\mathbb{C}[x_1, \ldots, x_n]$ to a field is maximal.

Example. The vanishing ideal of the point $(a_1, \ldots, a_n) \in \mathbb{C}^n$ is:

$$\langle x_1 - a_1, \ldots, x_n - a_n \rangle$$

and the map to quotient is the evaluation map to \mathbb{C} given by $f \mapsto f(a)$.

Nullstellensatz reformulated. These are all the maximal ideals.

Not even a Sketch. The quotient by a maximal ideal is a field:

$$\mathbb{C}[x_1, \ldots, x_n] \to K$$

and therefore $\mathbb{C} \subset K$. This is, in particular, a complex vector space which must have finite dimension (by a Theorem of Emmy Noether). But if $\mathbb{C} \neq K$, choose $\alpha \in K - \mathbb{C}$ and consider:

$$1, \alpha, \alpha^2, \ldots \in K$$

These vectors are eventually dependant, which determines a polynomial with α as a root. But \mathbb{C} is algebraically closed, so all roots are in \mathbb{C}.

Maximal ideals and prime ideals are the building blocks of algebraic geometry, as they correspond to points and irreducible algebraic sets, respectively. The subject can be developed with \mathbb{C} replaced by any algebraically closed field. But recently there has been interest in:

The algebraic geometry of the tropical numbers. This is the set:

$$\mathbb{T} = \mathbb{R} \cup \{-\infty\}$$

with $s + t = \max(s, t)$ and $s \cdot t = s + t$ (real addition), which is an additively idempotent ($t + t = t$) semi-ring:

- There is no subtraction in \mathbb{T}. The tropical number $-\infty$ is an additive identity, but $s + t = -\infty$ has no solutions besides $s = t = -\infty$.
- Every “non-zero” tropical number t has reciprocal $-t$ so \mathbb{T} behaves like a field with no subtraction.
But there is a surjective map to the Boolean semi-field:
\[T \to \mathbb{B}, \quad -\infty \mapsto 0, \quad \mathbb{R} \mapsto 1 \]
so \(T \) itself shouldn’t properly be called a semi-field.

Ideals. Rob Easton and I decided to work with *congruence ideals*. These are the “kernels” whose quotient is another semi-ring:
\[I = \ker(\pi : \mathbb{T}[x_1, \ldots, x_n] \to R) \]
But there is no subtraction, so these are not subsets of \(\mathbb{T}[x_1, \ldots, x_n] \)!
The kernel of a map is properly a relation:
\[I = \{ (f, g) \in \mathbb{T}[x_1, \ldots, x_n] \times \mathbb{T}[x_1, \ldots, x_n] \mid \pi(f) = \pi(g) \} \]
In the complex case, we can replace \((f, g)\) with \((f - g, 0)\) and get equivalent information, but without subtraction, we can’t do this.
Significant problems result. E.g., we cannot find bases of subspaces. But it gets even worse:
Let \((t_1, t_2) \in \mathbb{T}^2\) be a vector. Then:
\[s \cdot (t_1, t_2) = (t_1 + s, t_2 + s) \text{ with real addition} \]
is the line with slope 1 through \((t_1, t_2)\). Two vectors span the strip between the corresponding lines, and a series of vectors map span larger strips with no limit. In other words, the “subspace” given by an open strip cannot be generated by finitely many vectors.

Definition. A subspace \(W \subset \mathbb{T}^n \) is finitely determined if there are finitely many linear relations:
\[r_j = \left(\sum_{i=1}^{n} a_{i,j}x_i, \sum_{i=1}^{n} b_{i,j}x_i \right) \]
whose common locus of solutions is \(W \).
- In \(\mathbb{T}^1 \), they are either \(\mathbb{T}^1 \) or zero.
- In \(\mathbb{T}^2 \), they are (maybe unbounded) strips.
- In \(\mathbb{T}^3 \) they develop kinks (see the projective version).

Exercise. Are finitely determined tropical subspaces always generated by finitely many vectors?

Definition. An ideal \(I \subset \mathbb{T}[x_1, \ldots, x_n] \times \mathbb{T}[x_1, \ldots, x_n] \) is finitely determined if \(I \) there are finitely many relations \(r_j = (f_j, g_j) \in I \) such that \(I \) is the smallest ideal containing the \(r_j \).
Remark. Such an ideal determines a subset of \mathbb{T}^n:

$$Z(I) = \{ v = (t_1, ..., t_n) \in \mathbb{T}^n \mid f_j(v) = g_j(v) \text{ for all } j \}$$

and also an ideal of relations vanishing on Z:

$$I(Z(I)) = \{ (f, g) \mid f(v) = g(v) \text{ for all } v \in Z(I) \}$$

The strong Nullstellensatz explains how to relate $I, Z(I)$ and $I(Z(I))$. In the classical case, for example,

(a) if I is the zero ideal, then $I(Z(I))$ is also the zero ideal
(b) if $Z(I)$ is empty, then I contains a constant (weak Nullstellensatz)

Rob Easton and I proved a Nullstellensatz for tropical ideals.

Theorem. (Weak version).

If I is finitely determined and $Z(I) = \emptyset$, then:

$$(f, c \cdot f) \in I$$

for some $f \in \mathbb{T}[x_1, ..., x_n]$ with a non-zero constant term and $c \neq "1"$.

(This is the tropical analogue of having a constant function!).

Not even a sketch. Interestingly, we prove this by proving a fact about tropical ideals that is false for ideals in the complex case. Namely, if I is finitely determined, then there is a single relation in I such that:

$$Z(f, g) = Z(I)$$

Then we use a lovely trick to deduce the result. If $Z(f, g) = \emptyset$, then by the intermediate value theorem, either $f(v) < g(v)$ for all v or else $f(v) > g(v)$ for all v. Assume the former. Then for some $\epsilon > 0$,

$$(f, g) \in I \Rightarrow (f + \epsilon f, g + \epsilon f) \in I \Rightarrow (\epsilon f, g) \in I$$

which finally implies that $(f, \epsilon f) \in I$ by transitivity!