STACK THEORY AND APPLICATIONS

1. BACKGROUND

1.1. Moduli of triangles. An example of a stack is the moduli stack M of trian-
gles:
An oriented triangle is an ordered triple (z,y,2) of positive real numbers satis-

fying

r+y < 2z
r+z < Y
y+z < x

There is a universal oriented triangle
F; Y 3
U—MCRy
obtained by going out x units on the positive z-axis, then y units into or through
the first quadrant, then closing up. Given a scalene triangle, it has 6 representatives
in M corresponding to the 3! = 6 orderings of the set of distinct numbers {z,y, z}.

However {z,z, 2} has only three orderings corresponding to the three positions of
z and {z,z,z} has only one representative in M. Thus

M = S3\M

where S3 denotes the permutation group is a stack, in fact a smooth stack because
M is open in Rﬁr and therefore smooth. However there is no universal triangle over

M because the action of Sz on M has isotropy subgroup S» at each of the three
elements over {z,z,z} so we get only half of the isosceles triangle over the corre-
sponding point of M and only one-sixth of the equilateral triangle over {z,z,z}.

1.2. Fibered categories. To define the kind of stacks we want, we let
(G]

be the category of schemes of finite type over SpecC. For X € Obj (&) we have the
contravariant functor of points

hx : 6 — Sets
S ~ Hom(S,X)
where a morphism
g:S—=>T
goes to
Hom (T, X) — Hom(S,X).
f = [fog
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Definition 1.1. A functor
F:6 — Sets
is said to be representable if there is X € & such that
F = hy.
Now each X € & gives rise to its own category which we will denote by
X.
It is given by

0Obj(X) = {(S,u):S€6,ue Hom (S, X)}
S N T
Mor (K) = u \‘ \/ v
X
Then there is a functor
p : X—6
(S,u) —» S
so that (X, &) is called a fibered category. Notice that pg is itself a category with
(1) Obj (ps) = Hom (S,X)
S RN S
Mor (ps) = u N\  u
X

This is an example of a fibered category which is fibered by sets, that is, each
category ps has the property that its only morphisms are the identity maps. In
general a category € is a fibered category over & if it acts like a “sheaf of categories”
over &. That is, given any S € Obj&, we assign a category

¢sCc¢
in such a way that, for any morphism,
f:r—>S
and any object
& € Objeyg
there is a well-defined object
fr§ € Objer
and arrow
p:fE—=¢

with the property that, given any n € Obj&r and arrow
(Y:n—>& € Mor€
there exists a unique

B:n— f*€) € Mor€
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such that
po =1
(Notice that we do not say that
frogt=(g0f)

but some compatibility of the left-hand and right-hand sides of this equation follows
from the definition.)

Definition 1.2. A fibered category € over the category of schemes & is a functor
p:€—>6
such that
1) every diagram
s
P
F
T — p(s)=8
can be completed to a “cartesian” diagram

t i) S

V¥ ¥
T=p@) = s

2) for every diagram

4
p N\
T t N s
NG g
r "2 g
with
p(h)=FoG
there exists a unique arrow
g:t =t
such that
G = pl9)
h = fog.
The question of representability is whether, for a given fibered category
-6,
it is isomorphic to an X.
Example 1.1.
M, =+ 6

where we let Cs denote a smooth family of genus-g curves over the scheme S and
Obj (M) = {Cs}
MOT’(QJIQ) = {Cs(—>SXT CT}
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This kind of fibered category is called fibered in groupoids of automorphisms of C's
over S.

Now suppose G is an affine algebraic group. We consider the category of G
-schemes with

0bj (G) = {Gs}

where G is an affine group-scheme over S (with “fibers” isomorphic to the product
of a fixed affine algebraic group like GL (n)) and morphisms

{Gs «— S xr Gr}.
Example 1.2.
BG =+ 6
where we fix a group scheme G and let
E—~S
be a principal G-bundle, that is, we have an action

E xsGg — E

pN v
S

We have
Obj (BG) = {Es}
Mor (BG) = Hompg(Es,Eg)
= {Es+— Sxg Eg}.
For example
BGL (n)
is the fibered category of rank-n vector bundles over schemes.
Example 1.3. Suppose
Xeo6
has a G-action. We might, for example, consider
[X/G] - 6
where
0bj ([X/G))s = {f : Bs = X}
is the set of all G-equivariant maps from principal G-bundles Es over S, and
Mor ([X/G]) € Hompg (Es, Es/)
given by

Eg — S Xg1 Eg

\{(proj~,f) 1% f!
SxX
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Example 1.4. For example, in Example 1.3 we might take
X = point.
Then
[X/G] = BG.

1.3. 2-categories. A 2-category is a category C such that, for any two objects
s,t € C,

Objsy = Morc (s,t)
s Lot

Morsy = 1 L | :f,f € Morc (s,t)
s L) t

is a category. The elements of Mors; are called 2-morphisms. An example of a
2-category is the category of topological spaces and continuous maps in which the
two-morphisms are the homotopies of maps.

Referring to the above, given an affine algebraic group G and X € & with a
G-action

c:GxX =X
we have a morphism, that is, a functor
F:X — [X/G]
such that the composition of functors
poF
is actually equal to p, not just up to isomorphism. This functor is defined as follows:

GxS GxX
Fu:5—-X)= N lo
X

where the G-action on G x S is via left-multiplication on the first factor.
Another morphism is the morphism

BG £, BG'

NP v
S

associated to a homomorphism of affine algebraic groups
p:G—= G
To see what this is, suppose we are given a principal Gg-bundle Eg . We define
G' x9E = G x E
{909 xe~g' x(g-€)}
that is, the quotient under the G’ x G action on G' x E under which G acts on the

right on G' via ¢.
We will later prove:

Proposition 1.1. G' x¢ E is a principal G'-bundle.
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1.4. Categories fibered in groupoids.
Definition 1.3. A fibered category
p: €6
is fibered in groupoids if:
1. For all s € Obj (€) and (F: T — S =p(s)) € Mor (&) the set
L(F,5) = {(f:t > 5) € Mor (€) : p(f) = F}

is non-empty. Of course, for

s€l(ls,s)
we have
1, € l(F,s).
We will be interested in other
sel (1 S, S) .
2. The liftings in 1 must satisfy the following condition. Given a commutative
triangle
TI
N
JG S
/'
T

in &, and liftings f' € [ (F',s) and f € [(F,s), there exists a unique g €
I (G,t) such that

tl
N
lg s
/s
t
commutes.
Notice that, applying 2 to the lifting
S
\‘15
s
/s
SI
of the triangle
S
N
$1g S
/(ls
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on S one gets that any f € [(1g,s) must have a right inverse . Applying 2 now
to the lifting

\‘131
7
L)

of the identity triangle on S shows that « has a right inverse J and so must be an
isomorphism and

f=foyob=46
is an isomorphism.
So any two t,t with liftings

t

h
s

/

tl

have to fill in with a unique isomorphism
yit =t
So t unique up to unique isomorphism.
Thus, for S € Obj (&), if we let
s
be the category whose objects are given by
p ()

and whose arrows are all arrows lying over the identity 1g, then &g is a groupoid,
that is, a category all of whose morphisms are left and right invertible.
Recall that any category C has an associated morphism category Morg with

Obj (Morc) = Mor(C)
a =
Mor (Morg) = 4 i)
ca =

and that a natural transformation n between two functors
F,F':C—>D
is a functor
n:C — Morp
such that
n(c) = (F(c) = F'(0))
Given

(F:T—S)e Mor(6)
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and
s € Obj (€g)
we may pick, once and for all, a distinguished element
fel(F,s)
and call it
F:
and call its domain
F*(s).

We will call our category fibered in groupoids special if the assignment
Mor (6) xg € — Mor(€)
F — F}
is a functorial in the sense that
(FoG) =Ff oGl

(In general in a category fibered in groupoids, we only have a distinguished isomor-
phism

(FoG)’ =Ff oG

not an equality.)
Now for any s’ € [ (1g,s) we need to compare

F*(s),F*(s') € €r
We let
Isos (s, s') (F)

be the set of isomorphisms from F* (s) to F* (s') over T, that is, the set of mor-
phisms from from F™* (s) to F* (s') in €7 . (This may be the empty set.) If we have
a commutative diagram

T
\‘G
LH X
/P
S

then
Isox (z,2') (FoH) < Isog(F*z,F*z')(H)

canon.
since by property 2 there is a unique pair of isomorphisms a, o/ making
H* (F*z) -5 G*z
\J \J
H* (F*z') = G*2'
commutative. In what follows our notation will often not distinguish between ele-
ments of Isog (F*z, F*z') (H) and their canonical images in Isox (z,z') (F o H).
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Thus for any z,z' € €x := p~! (X) we define a functor

Isox (z,2') : X — Sets
(F:8S—= X) = Isox (z,z')(F)
T
\NE ' '
Isox (z,2") (F) = Isox (z,z') (G)
+H P X = | o H* (o) € Isos (F*z, F*2') (H) — Isox (z,2') (G)
F canon.
S

A category fibered in groupoids is a fibered category in which the morphisms

Mor€g

lying over the identity on S are isomorphisms. A special kind of category fibered in
groupoids is a category fibered in sets, that is, ObjCg is a set and Mor&g consists

only in the identity maps on elements of Obj&€g. In fact, given any functor
F : 6 — Sets

we get a category fibered in sets by putting

¢ = Sets
0bj (€s) = {{z}:z € F(5)}
Mor (€5) = {id.(y :z € F(9)}.

Conversely, given a category fibered in sets, we get a functor
F :6 — Sets

by noticing that in this case [ (F, s) always is a singleton and so we can define

F(S) = Obj(€s)
F(F:T>S8) = (OWfiﬁgg&ﬂ)_

Example 1.5. The fibered category
¢=X
is a category fibered in groupoids since
F:T—S5 S—X
has a unique lifting
F*(s)=soFe€l(s,F)
which has no non-trivial conjgations over 17. Here

F*(s) =5 S
Ff — ~LF03 is .
X = X

This category fiered in groupoids is special.

) |
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Example 1.6. Suppose that, for the category € fibered in groupoids, each
Cs
was a set for each
F:T— S
the collection
{f € Mor(¢):p(f) = F}

came from a well-defined (pull-back) map

F*:¢g = ¢
then there is no ambiguity in defining F*. Thus over
ls: 55— 8
we need a fixed morphism
Cs — Cg.

The only thing this can be is the identity map, since the identity map is always an
allowable morphism for each object in €. Also the morphisms between two objects
(points) in the category (set) €s must be faithfully represented as maps of a point
to a point, so there is at most one. Thus for s’ € [ (s,1s) and

F*(s),F*(s'Y e er
the set
Isogs (s,s') (F)
has exactly one element in it, namely
F*(9)
where
g:5s—5

is the unique morphism in the category (set) €s taking the point s to the point s'.
If ¢ is a presheaf, say for the etale topology, then the pull-back composes cor-
rectly.

Proposition 1.2. A morphism
a: X—¢
is determined up to natural isomorphism by
a(X,1x) =: Ax.
For example, the morphisms
Y-X
are in 1 — 1 correspondence with the morphisms
Y =+ X

of schemes.
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Proof. Given two functors
a,b: X ¢

for which (X,1x) go to the same object in € we obtain a natural isomorphism as
follows. For a morphism

we have, by 2 above, a uniquely determined isomorphism

a(T,9) = fb(S,9) = b(Se)
RN Lo,

T N S
so we define the natural transformation via this isomorphism. O

Example 1.7. For the fibered category
p: BG—- 6
we have
F*(s)=(ExsT—>T)el(s,f)-

We can do the same for morphisms

x
hY
) S .
/
Yy
The property 2 implies a unique fill in
x z' x
pY hY pN
Fr| J S 1= 1 S = | S .
/ / /
y y' y
1.5. Fibered product of categories fibered in groupoids. Given a diagram
¢
\‘f
¢
g
£Y)

of categories fibered in groupoids, we define a new category called the fibered prod-
uct:

0bj (€ xe D) = {(z,y,a)}

where
z € O0bj(€),y € 0bj (D)
pe(z) = po(y) =S
o (f(@) > 9() €llg(y),1s),
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and
Mor (€ xe @) ={F*(S): («',9',a'") = (z,y,0)}
where arrows make a big commutative diagram over
F:8 —8.
A bunch of routine diagram checks leads to:

Lemma 1.3. € x¢ D is a category fibered in groupoids.

A word of caution. The natural diagram
¢ x e D

e p
¢ D

N\ g
¢

is only commutative up to isomorphism.
Example 1.8. Consider the category
[X/G]

of principal G-bundles with G-equivariant maps to X given as in Example 1.3. We
have a functor

F:X — [X/G]
obtained by associating the trivial G-bundle structure
GxS
with G acting on the first factor by left multiplication to S and the morphism
GxS —» X
(9,8) — g-f(s)
to
f:5- X
We can then form

X Xx/q1 X
whose objects are

GxS < GxS

f:8S=X,f:9—-X, N  r (1)

X

Notice that « is required to be an isomorphism over S.
The condition on « translates to the statement that an object of the fibered
product is (f, f',a) such that

So if we set
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then
(a, ') € Obj (R)
gives
f=a-f
for which

(f, ', @) € Obj (X x(x/61 X)) -
In fact we thereby have an equivalence of categories
XX[X/G]K(—)GXX.

Notice that, for a fibered product of categories fibered in groupoids, the choice
of f* on the category

¢ x ¢ 2D
for
¢
\{a
¢
/b
D

is determined (up to unique isomorphism) by the choices of f* on €,®, & respec-
tively. The question is what to put for the ? in the diagram
(fre, fry,?7) - (=90
i)
T 2 s
One choice is f*(a) : f*(a(z)) = f*(b(y)) and the other is the required iso-
morphism a (f* (z)) = b(f*(y)). But these are naturally isomorphic via the the

diagram
a(f*(z))
0) N
fla(z)) — a(z) .
\J \J

T — S

where property 2 forces a unique element of I (17, f* (a (x))) into the parentheses.

2. STACKS

2.1. Axioms defining a stack. In the following definition we have a covering
{T, — S}
in the etale topology, the Grothendieck topology on the category of schemes. We
have maps
iap ¢ TaXxsTp— Ty

.af

Za,@'y Ty XsTﬂ XsT,Y—)Ta XSTg

ete.
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If we have a category

€=+ 6
fibered in groupoids, a covering {T, — S}, and a map
f:S—-X
and, for
z, 1 € Obj€x

an isomorphism

s: ffr — f*2'
then we have, from the definition of category fibered in groupoids, a commutative
diagram of induced distinguished isomorphisms

inf*x — i fra
\ \
(foia) =2 (foia) 2
Definition 2.1. A prestack is a category
¢—+6

fibered in groupoids for which “isomorphisms patch,” that is, for each X € & and
z,2' € €x, the functor

I :=Isox (z,2') : X — Sets
(f:S=>X){f*z & f*2'}

is a sheaf. Namely, for a covering
{Ty — S}
defined over X, the sequence

[(S) > [LIT) 7, gl (TaxsTs)

s:f*z— f*2' — {sa}
{sa} = {(sa)as}
is exact.

Definition 2.2. A stack is a prestack for which “descent data is effective,” which
roughly means that the “functor”

¢: X — Sets
(F:S—> X)) €g

is a “sheaf” for the etale topology. More precisely, suppose
to €Cr, .

Notice further that an isomorphism

(2) ((pga : (ﬁgﬂ)* ta — (zgﬂ)* tg) € Mor (CTaxsTﬂ)
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induces by property 2 of category fibered in groupoids a unique isomorphism
. * . *
gogg'y : (i25,) ta — (Zgﬁw) tg.

The property of prestacks that “descent data is effective” is the property that,
whenever we have a system of isomorphisms (2) such that

@357 0 pghY = 287,

then there is ¢t € €g and isomorphisms
(Yo 15 (t) = ta) € Mor (€s)
such that, uder the induced isomorphisms
(i65)" (it (1) = (i%)" (ta)
induced by 9, we have commutative
(25) Ga®) = (i25) (ta)
X} 1 ¢sa

(lgﬁ)*(lg(t)) - (igﬁ)*(tﬂ)‘

(Here the left-hand vertical map can be considered to be the identity under our
standard identification

(i29)" (05 (1) = Giap)” (0= (i25)” (i5 )
via canonical isomorphisms.)

Notice that, if € is special, the condition becomes the exactness of the sequence

Cs — Ha Q:Ta : Ha,ﬁ (Q:TaXSTﬂ) .

In the case that € is fibered in sets, this just becomes the condition that
¢ : 6 — Sets
S Cs

is a sheaf.

2.2. Representability. The notion of representability is a bit different for a mor-
phism (functor) of stacks

3) p:§F =3
over G.

Definition 2.3. The morphism (3) of stacks fibered in groupoids is (strongly) rep-
resentable if, for any scheme X and any morphism (functor)

f: X3,
the fibered product
X x5z 3§
is isomorphic to a category
Xo.r
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for some
X, € ODj (8).
Later we will have a notion of weak representability in which X and X, are algebraic
spaces rather than schemes.
Referring to 1.5 recall that representability of the fibered product requires for
each f: X — §:
1. A morphism
f# : X%f - X

of schemes.
2. An equivalence (that is, a fully faithful essentially surjective functor) between
the category of triples consisting in

y:Y - X e Mor(6),

an object
Ay € {;"Iy,
and an isomorphism
p(Ay) € By
la :
fly) € By

and the category of factorizations

Y o X, 5 X.

Example 2.1. The identity functor on § is always representable. For each f :
X — 3, define

Xie. = X
fge = dd.
Then the equivalence of categories sends
y:Y -+ X

to the triple
y:Y =2 X, f(y) €3y, 1y
Definition 2.4. A stack § is representable if
X=F

is an equivalence of categories for some scheme X.
If P is a property of morphisms
S—>T

of schemes which is local over T' and preserved under base extension, then a repre-
sentable morphism (3) of stacks over schemes inherits property P if all

f# : Xm,f — X
have property P.
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Definition 2.5. A stack § over & is called algebraic if the diagonal morphism
28 xed

is representable and quasi-compact.
3. DESCENT

3.1. Covers in the Grothendieck topology. To motivate this concept, let X
be a scheme and

lo Uy — X
the inclusions making up a Zariski open cover.
Proposition 3.1. 1. For a scheme S and a collection of morphisms
fa:Ug— S
such that, for the fibered product (intersection)

8
Ua Xx Ug za—’ﬁ) Ug
Ligg o digo
Us . ¢
we have
faoily = fgoib 4
then there exists a unique

f: X—>S8
such that
fo=foig.
2. If F and G are quasi-coherent sheaves on X and we put F, =i} F, etc., and
we have
go : Fo = G,
for which

(i%5)" 9a = (igﬁ)* 95
then there exists a unique
9g:F -G
for which
Jo = igg-
3. Given a collection F, of quasi-coherent sheaves on U, and isomorphisms
vap : (1%5) Fs = (i%)" Fa
for which
(l%v)* Pay = (Zggy)* Pap © (1%7)* PBy
then there exists a quasi-coherent sheaf F' and isomorphisms
Vo i F — Fy
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such that
pap = (i) ) o ((igﬂ)*%l) '

To see the significance of the above reformulation of the above elementary lemma
in sheaf theory, form a category

Qcoh ({U,})

whose objects are collections
(o () 7 575

as in 3 and whose morphisms are data
(ga :Fy — GOt)
as in 2 which “commute with the descent data,” that is

S50 (i) 98 = (1) a0 P s

There is an obvious functor
{i%} : Qcoh (X) = Qcoh ({Uy})

and the property 2 is the assertion that this functor is fully faithful whereas the
property 3 is the assertion that this functor is essentially surjective. Thus the two
properties together prove:

Theorem 3.2. {i}} is an equivalence of categories.

Descent is nothing more than the corresponding assertion of an equivalence of
categories in the case in which, in the entire discussion above, we replace the Zariski
topology with the Grothendieck topology for faithfully flat morphisms of finite
presentation or for etale morphisms. Thus in the above Proposition and its con-
sequences the maps i, become flat morphisms 7, of finite presentation or etale
morphisms and all else is unchanged.

Example 3.1. Let G be an affine algebraic group and let
n:E—+X

be a principal G-bundles. Now the statement that E is a principal G -bundle is the
statement that = is flat and that the diagram

ExG %5 E

I pE I
E 4 X
is cartesian, where
ale,g)=e-g

is the G-action on E. Thus
(4) (pg,a) : ExG=ExxE
(e;gah) = (eae'g)
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and
(5) ExGxG = ExxExG2ExxExxFE
(eagah) = (eae'gah)’_)(eae'gae'gh)
Example 3.2. There isomorphism allow us to write descent data for the flat “cov-

ering” {m} consisting of a single covering map. We then have for the fibered product
of three covering maps

ExGxG
v p1z Ipis NP2
Ex@G ExG ExG
pe PPN e TN
E E E
where, in (5),

D12 (eagah) = (eag)

P13 (6,g,h) = (eagh‘)

p23(e,9,h) = (eg,h)

and we denote
71 = PE ©9P12 = PE ©° P13

For example, vector bundles on X can be thought of as given by their descent
data, namely, a quasi-coherent sheaf F' on the domain of the only covering map =«
together with an isomorphism

p:a"F = ppF

Definition 3.1. A G-equivariant quasi-coherent sheaf on E is a quasi-coherent
sheaf F' on E and an isomorphism

p:a"F = ppF
Thus by Theorem 3.2 we have:

Theorem 3.3. There is an equivalence of categories between the category of quasi-
coherent sheaves on X (for the chosen Grothendieck topology) and the category of
G-equivariant quasi-coherent sheaves on E.

Proof. The isomorphism ¢ corresponds to the cartesian diagram

FxG 2% F
{ {
ExG % E

where we write
o (v,g) =v-g
O

Exercise 3.1. The cocycle condition 3 on ¢ in Proposition 3.1 above is equivalent
to the condition that o' is an action.
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Proof. The cocyle condition says
Pa3 (0) o P12 () =Pis (@) : FXGExG - FxGxG
and comes from lifting
p:a*F — ppF

under the commutative cube

ExGxG — P23 — ExG
 pia (e,9,h) < v (eg;h)
Ex@ - a — E |
(e:9) P13 €9 «
| i | 1
PE i
4 ExG - o | - E
.  ps (esgh) e egh
FE — T — X

to obtain a commutative system of isomorphisms from

mF — (p3)y — pg (F)
‘/(Plz)# ‘/(PE)#
pg (F) - ap - F |
(p13) 4 Qe
| + | i
(pE)# ™
i pg (F) S F
 (pr) 4
F
to
FxGxG — Pz — Fx@G
 prs (f,9,h)  pe (fg,h)
Fx@G - o = F |
(£.9) P13 fg o
| ' I
pFr
) Fx@G - od = F
f  pe (f,gh) fah
F

3.2. Single morphism covers.
Definition 3.2. A morphism of schemes
f:T'=>T
is quasi-compact if the preimage of every affine open is a finite union of affine opens.

We can simplify the notation for descent data when we restrict ourselves to
covering consisting of a single faithfully flat, quasi-compact surjective map

f:T' =T
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(Recall that faithfully flat means that O is faithfully flat over f~1Or, that is,
O o,

is fully faithful, that is, exactness of a sequence after tensoring is equivalent to
exatness before tensoring.) We have

T XT T XT T

\/Pm J’P13 \‘pzs
T’ XTTI T XTTI T' XTTI
' m NP2 v p1 NP2
T T T'
o +r 5
T

or finally simply
T' X T XT T

*LP12 pr13 przs
T XT T
~Lp1*l’p2
TI
\y
T
where we denote
M  =P1OoP12 =pP1°pPi3
2 ¢ =P20p12 =P1opa23
3 . = P290pP13 = P20 Pa3.
We define a category
eyt
with
Obj (€% = {(u€ &, ¢:piu = piu) : P30 Playp = pisp}
piu -5 phu
Mor ((€5°557")) = {h:u—v€EMor(€p): Lpih @ | pih

piv 5 py

and a descent functor

df : € — gdeseent,

u = (ffu,p:pio ffu— piofru)

We then have the following alternative definition:
Definition 3.3. A category fibered in groupoids
¢—+6
is a stack if, for all etale surjective maps
f:T=T

of locally finite presentation over T', df is an equivalence of categories.
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It is then a theorem that, if df an equivalence of categories for f etale, locally
finitely presented over T', then it is also an equivalence of categories for f faithfully
flat of locally finite presentation over T .

3.3. Descent and quasi-coherent sheaves.
1. For a quasi-coherent F” sheaf on T" together with an isomorphism
@ :piF' — piF"
satisfying the cocycle condition
P33 © Do = Pz,
then F' descends to a sheaf F' on T together with an isomorphism

V:F — f*F
such that the diagram
piF £ pLF
\pI \/ 2
FI

is commutative. Thus the datum of a quasi-coherent sheaf on 7' is equivalent
to descent data.
2. Given descent data

(F',0), (G, %)
then the datum of a morphism
a:F -G
is equivalent to the morphism descent data consisting of
o :F'= @
and a commutative diagram
piF 5 piF
Iprar Ipjar .
pic 5 pe
3.4. Local (affine) data. Let

T = SpecA
T'" = SpecA’
with
A" = A @4 A @4 A
Tp12TP13TP23
A= A A Al
(6) 11102
AI
Ty
A.
So
p(@) = ad®ax1

pa(a) = 1®ad
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and

A By 4@ A
(7) T T p2

A4 L
is a cartesian square, as is

Al®AAl E A'®AAI®AAl
(8) o T P12
Al 2, A @ A
Suppose that N’ is an A’-module, Then

NI ®p1 AII — NI ®A AI
nl ®p1 al ®A bl — nlal ®A bl
and
NI ®p2 AII — AI ®A NI
ad@ab ®p,n' = d®sb'n'.

We suppose an A”-module isomorphism

9) N' @y A" 5 N' 9, A"
(10) NI(X)AAIi)AI@ANI,
that is, if

(' ®ala) = Za; ®a N}
then
p(n'd @ab) = @((n'®ala)-(a'®a0"))
= o' ®a1a)-(a' @40
= Z aia' ®nib'.
We further demand that (9) satisfy the cocyle condition
33 0 Map = izp : N' @y A" = N' @r, A",
that is, if, for any permutation o of {1, 2,3}, we let
i, : Rl ®a Ry,®a Ry > R, @4 R, , @4 R4
be the isomorphism which switches factors,
(11) TopoTiap = T3P N' @4 A @A = A s A @sN'
(ida @ ) o (p®idar) = iaz0 (p®Ridar)oiag
Then we can define a module N as the kernel of the map
po(idy®1)— (1®idy) : N — A' @4 N’
n = o' osl)—(1®an).
Thus
N={n"eN:p(n'®al)=(1®an)}

23
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so that, for n € N we have

(12) p(na'®@ab) = ¢((n®al)(a’ ®ab))
(1®an)-(a' @4
= (a'®ab'n).
so that
(13) ¢ (na' ®a1) = (a’'®@amn)
Via f we have an A-module structure on N together with a natural map
(14) h:N®asA = N'.

This map is injective since

Zniag =0

® <Z nia; ®A 1A’) = ¢ (Z (ni ®a1)(a; ®a 1))
D (1®an)(aj®al)
= Y (@ ®an)

and

implies that

Zni ®a a;- =0.
Lemma 3.4. Assume that A' is a faithfully flat A-module via f. Then referring
o (14), the map

po(h®1)
takes values in
1@ N'CA ®@N'
and gives an isomorphism of A'-modules
N@sA'- N =1 N =N".

Proof. We consider, for any A-module M, the sequence
(15) 0 MM Nre, A (idr @id yr ©1) —(idm@1Didar) o o A @4 A
obtained by acting with

M ®4
applied to
g @iy, o AL,
The sequence (15) is exact by faithful flatness since, applying

®aA",

0—+A—

we obtain the sequence

id id 41
0 = MoygA ™% pro, Aoy Al

(idM®idAl®1®'idAl)7!1Ml®1®idAl®idAl) M®A A, ®A AI ®A AI
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which is seen to be exact by the fact that M ® 4 applied to the cartesian square (8)
is still a cartesian square. Finally using (15) in the case M = N' as an A-module
we obtain

id 1 ®id 41 ®1) —(id ' @1 Rid 41)

(16) 00— N' M N g, A N @y A @y Al

On the other hand the sequence
0 N — N Ul @D 4y o N1
is exact by the definition of N. Also
N={n'eN:pn'®1)=11Q4n'}
So applying
@A’
to this last sequence and using flatness we obtain the exact sequence

@o(idn1®1))Rid 41 —(1Qid N1 )Rid 41

(17) 03 N@sA' - N' @4 A A QAN @4 A

The key to the proof is to compare (17) and (16). To do this, we claim that we
have a commutative diagram

Ny A (Pl BN ASIdN ®idar g 0 Ao gl

Loy lida ®

A @4 N' (idA,®1®z'dN,51®z'dA,®z’dN,) A @4 A @4 N'
with exact rows and vertical isomorphisms. It suffices to check that
N, ®A A[ (‘po(idNim)))®idA’ A/ ®A N/ ®A A/
(18) Lo Vida ® ¢
A, ®A N, (ldA’&@;szl) AI ®A AI ®A NI

is commutative. Recall that, by (11)
(idar ® ) o (P ®idar) = i23 0 (p ® idar) 0 ia3.
Now apply the two formulas for this last map to
N ®@aleas A
Finally we use (18) to obtain a commutative diagram
(19)

(po(idnv ® 1)) @ida
NeasA' = Nes4 (1®ld—w>)®zd‘4' A @A N @4 A
Lo Lida @ ¢
(ida ® 1 @ idn)
—(1®idy ®idn)
N’ —

But by (13) we have

idpyr®1

AI ®A NI AI ®A AI ®A NI

@(na' ®41) = (a' ®4n)
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which implies that the image of N ® 4 A" in A’ ® 4 N' under the natural inclusion
N®AA' — A'®AN'
n®d — den
is the kernel of the map
AI ®A NI (idA/®1®idN/51®idAl®idN/) AI ®A AI ®A NI‘

But by (16) that kernel is exactly 1 ® N' = N'. To show that the induced isomor-
phism

N®s A = N'
is the standard one h defined above, we write
pnead) = ¢((n®l)-(18d))=(pnel)) (1ead)
(1®on)-(1®d)=1®nd.

O

Once we have N constructed from descent data, notice that, writing N' as N ® 4
A’ then
P NRg A @A 5> AQquNRyuA.

(20) nRad Y —ad dneb

3.5. Local data for morphisms. We continue to assume that

®aA'
is a faithfully flat functor. Given descent data
(N, ), (M)
then the sequence
' ®py A’
0 — Hom (M, N) 224" Hom (M', N') ®—1>4 | Hom (M',N')
P2

is exact. To see this, first recall that

AI
Hom (M @4 A',N @4 A') 2% Hom (M ©4 A' @4 A, N ©4 A @4 A')

(me1) = (Eni®a)» (mMe11)— (X ni®a 1))

so that the above sequence is just

Hom (M, N) EZE
Hom (M ®4 A\,N®4 A") Hom (M @4 A'®@4 A,N®4 A" @4 A").
(mel)~» (O ned)~»(mMelal)- (> n;®(a;®1—-1®a})))

So exactness comes from the fact that, if

Y ni®@el-1gad) =0

idAl ®1—1®idAl

then
(Z n; ® ag) € ker ((idy' ® ida ® 1) — (idyr ® 1 ® ida))
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so that

(E n; ® a;) eEN
by (20).
3.6. Globalization. We globalize this situation by considering a faithfully flat
quasi-compact morphism of schemes
T =T
and so have a cartesian diagram
T =T x¢T" 2 T
I N Lr
T' LT

Then (6) globalizes to the left exact sequence

# fe (p¥ —p%) _
0 0r LS f,0n (pl—>p2) f.O7m.
Given an affine cover
{Ti}
of T' and affine cover
{13}
of each T;, then by descent, a quasi-coherent sheaf § on T is a datum

&0 :pi — p5F).

4. DESCENT AND STACKS
We return to our situation of a category fibered in groupoids
F—-6

over the category of schemes. Given a faithfully flat quasi-compact morphism of
schemes

T =T
we have the globalization
T" =T %7 T" x7 T'

~L7r12~l/7r13~l/7r23
T :=T" xrT'

(21) *l’Pl *LPQ

of (6). We define a category
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by
Obj (F¢_p) = {cp :piu = phu i u € Fri mo3p 0 o = 7r13g0}
piu  Z5 o pry
Mor (Ff ) = h:(u,p) = (v,9): Ly comm.

pu B
and a “descent” or “derivative” functor
df : Fr—F&4 r.
too (et pr)
Notice that this functor is well-defined since
fopi=fop;

and so, by the property 2 in the definition of categories fibered in groupoids, the
isomorphism

pift
\(fopl)*
1= ¢
/‘(fom)*
p3frt

pift = p3fit
is canonically determined by the diagrams

T"
\‘fopl
4 id. T
/" fops
T"

in G, and liftings p f*t € L (t, f o p1) and psf*t € (¢, f o p2).
Thus we have a redefinition of stack in the etale topology:
Definition 4.1. A stack in the etale topology is a category F' fibered in groupoids
such that, for single map etale surjective faithfully flat quasi-compact covers
f:T" =T
the functor
df : FT — Fffi"l_)T

is an equivalence of categories and

. ==IIazq@.

In short, this definition is simply that a category fibered in groupoids over the
category of schemes is a fibered category in which “descent rules.” Notice that
the “single cover” restriction is no restriction at all since any cover can be made
into a single cover by taking the disjoint union of the domains of the covering as
a new single domain. Essentially our local computations above, together with an
essentially infinite number of commutative diagram checks gives:
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Lemma 4.1. The fibered category
Qcoh —» &

is a category whose objects over S € & are the set of quasicoherent sheaves on the
scheme S. An arrow from a sheaf G on T to a sheaf F on S is a morphism

f:r—>S
and an isomorphism
G = f*F.
This fibered category is a stack.
Proposition 4.2.
X

is a stack.
Proof. We need to check that
Xp— X%’—;T

is an equivalence of categories. The question is whether, for

f:T=T
the morphisms
u:T =X
are equivalent to descent data
T - X
with
(22) u' op; = u' ops.
Now take affine covers
T = T
T = Uij T},
where
f (Tilj) CT;.
Then

23 0 kT~ @D k[T - (D, [T5]) Sury (D, * (7))

is exact by faithful flatness since the sequence obtained by tensoring it with

@ (D, + [74])

is exact. We can localize (23) as the exact sequence

005, @, £.0r, + (P, £.0r,) 00, (D, £.0r;)

Let

Ui = Ul poa -
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Now by (22) we have a morphism

fo ()1 Ox = ker (@J f«Ory, — (@] f*OTifj) R0, (EDJ f*Oqgj))
which defines a Zariski-continuous map
u; ;= X
and so a morphism
Ox = (ui), (Or).-

Use the uniqueness of the construction to paste the locally defined maps together.

O
Proposition 4.3. If G is an affine algebraic group,
BG
is a stack.
Proof. Given descent data
E —-T
with
p:E"— E"
we want
E—-T.
Recall that local triviality means
E'=2GxT

so that
p:GxT" > GxT"
is an isomorphism of G-bundles, that is, a map
7:T" = G.
The cocycle condition
GxT" =GxT"
becomes
T (t,0) = 7 (u,v) - 7 (t,u) .
Thus we can define and equivalence relation
(g1,t1) ~ (g2,t5)
if and only if
(ti,t2) €T xg T' = T"
and
g2 =T (t1,t2) - g1.
The exactness of (23) then gives
Or = Og ® Op
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so that the compostions with the maps
P06 @ Orn = Og ® Ogn

correspond via 7. We then apply a G-equivariant version of (4.1) (see Theorem
3.3). O

5. ALGEBRAIC SPACES

Definition 5.1. An equivalence relation in the category of schemes over S is a pair
of schemes over S

(R,U)
with two morphisms of schemes
R=U,
¢
or equivalently a single morphism
(24) R—>UxgU

locally of finite type (that is, the inverse image of each scheme in some affine cover
is quasi-compact, i.e., covered by a finite number of affines) such that
i) (24) is categorically injective, that is, if the compostions

T=3R—->UxgU
coincide then two maps
T=R
coincide,
ii)
R(T)=Homgs (T,R) CU(T)x U (T)
is an equivalence relation.

Condition ii) just above can be reexpressed in terms of the standard conditions
for an equivalence relation as follows:
iia) The diagonal map

U—-UxgU
lifts to R (and so in particular the two maps
s;$t:R=2U
are surjective),
iib) the involution
UxsU —» UxgU
(z,y) = (y,2)
lifts to an involution on R;
iic) since the diagram
UxsUxgU 235 UxgU

4 T2 lm
UxgU LN U
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is cartesian, it receives a morphism from the cartesian diagram

RxyR — R

! I
R = U
and the requirement is that the diagram
Rxy R R
1 1
UxsgUxgU — UxgU
(z,9,2) = (z,2)

be made commutative by a lift
Rxy R— R.

Notice that all lifts in the above definition are unique because of categorical
injectivity.

Definition 5.2. An equivalence relation
REY U xsU
is etale if at least one of the (locally finite type) maps s or t is etale.

Given an etale equivalence relation

R=3U
one defines a quotient presheaf as a functor
P :58° = Sets
with
U(T)
P(T)=—=
=% @

that is, equivalence classes of map
T->U.

This presheaf is separated, that is, for an etale cover
To — T

the induced map

P(T) = [[P@T.) =P (HTQ)
is injective
Definition 5.3. An algebraic space U/R is the sheafification in the etale topology
of the presheaf P derived from
(25) R—-UxgU

as above. If (25) is a closed immersion, we call the algebraic space separated. If
(25) is simply and immersion, we call the algebraic space locally separated.
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So an algebraic space is a functor
U/R : S8°— sets
T — (U/R)(T)
An element of
(U/R)(T)

is an equivalence class of pairs
(¢ 1 esmir, oe p(T))
where the equivalance relation is given by
(t’,TI) ~ (t”,T”)
if the map

(=7")

17 '
T
T x7T" -5’ U xgU

factors through R.
Notice that we have a morphism (natural transformation)
(26) U = U/R
(T—-U) = (U/R)(T)
Proposition 5.1. The map

R—UxyrU
induced by
R - U
X \
U — U/R
s an isomorphism.
Proof. The natural map
U(T)
— U/R) (T

is an injection, so

R(T)=U(T) xw/mym) U(T).

33

O

Lemma 5.2. The natural transformation (26) is represented by (etale and surjec-

tive) schemes, that is, if
X —->U/R
is a morphism, then
UxyrX &Y

where Y is a scheme and

Y- X
induced by

Y -+ X
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etale and surjective.

Proof. First assume we have a factorization

X —->U—->U/R.
The cartesian diagram
X
)
R = UxyrlU - U
1 1
U - U/R

shows that
UxyrX=RxyX
and the projection
Rxyp X —>X
is etale and surjective since
R—-U
is.
In general there exist an X' and a commutative diagram

X' - U + R

! ! 1
X - UR « U

with
X' =X
etale and surjective. So, by the first step, we get
UxyrX'=Rxy X'.

One then constructs the scheme representation of

UxyrX
by descent for etale maps using descent data
QXU/R (X' XxXI) X'XXXl
U iU
Uxyp X! - X’

The (rather difficult) descent theorem for etale maps then produces a scheme
Uxy/r X
which is etale and surjective over X.
Example 5.1. Let U be given by
zy =0
in the affine plane and let R be given by
(2,0) = (0,z), = #0.
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Then U/R is the affine line with an “extra” formal neighborhood of 0 in Al at-
tached at 0. It is a locally separated algebraic space but is not separated since one
component of R has non-closed image in U. Notice that the morphism

U/R — A
is ramified but

U—-U/R
is not.
Example 5.2. For

S = Spec (C)
we have that
F (Spec(C)) = %

since every etale surjective map
T' — Spec(C)
has a section.
Now we can make the following alternative definition of algebraic space.

Definition 5.4. An algebraic space is a sheaf in the etale topology, that is, a
functor

F:8° — Sets,
such that there exists a scheme V' and a morphism
V> F
which is represented by an (etale and surjective) scheme and is such that
VxpV 23V xsV
is quasi-finite (that is, finite fibers).

We have already seen that the original definition implies the alternative one. In
the other direction the representability condition imples that
R=VxpV
is a scheme of finite type over S and then one checks that R is an etale equivalence
relation. So we have an algebraic space V/R. To see that

F&V/R
look at the quotient presheaf
vV (T)
- R(T)
giving, by definition, an injective morphism of presheaves
P — F.

Then one only needs to check that every section comes locally from P, that is, for
some etale surjective

T =T
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we have that our element of F (T") lifts to V (I”). But we can achieve this by
letting
T'=V xpT.

Thus an algebraic space is a sheaf which is locally a scheme in the etale topology,
and so every property of schemes which is local in the etale topology translates to
a property of algebraic spaces.

Lemma 5.3. If F is an algebraic space, the diagonal

F > FxsF
is represented by a scheme.
Proof. Let
X' =XxpU
and note that
X' =X

is quasi-finite. Consider the diagram

fps - X' xx X!
N4 N4
fp2 - X'
Y v
m - X !
!
J, R — J, = UxgU
v v
F — FxgF

where fp denotes fibered product. Since fps and fps are schemes, so is fp1 by
Grothendieck’s descent theorem for quasi-finite maps. O

Corollary 5.4. If F is an algebraic space and X and Y are schemes for which
there are morphisms

then

is a scheme.

Proof. We have a cartesian square

XxpY — XxgY

4 L.
F — FxsF
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Proposition 5.5. Let F, F',G be algebraic spaces over S. Then

F xqgF'
is an algebraic space.
Proof. By the above we have
Uu —- F
u - F

representable by schemes, etale and surjective. Thus, by above,
UxgU — F xgF'
is representable by schemes. But U xg U’ is a scheme V' and its diagonal
Rxg R
is of finite type over S and so becomes the R for the algebraic space
R—V xgV.

We now clarify the notion of separability which, in the above definition of alge-
braic space, seemed to depend on the choice of U. O

Definition 5.5. An algebraic space F' is locally separated if the diagonal map
F— FxgF
is an immersion and separated if it is a closed immersion.
To justify this definition in light of our earlier use of the terms, we need:
Proposition 5.6. If
U—F
is etale and surjective, then F is locally separated (resp. separated) if and only if
R=UxpU—=>UxsU
is an immersion (resp. closed immersion).

Proof. (Closed) immersion is a local property in the etale topology (on the domain)
and stable under base change. So we can appeal to the following proposition. [

Proposition 5.7. Let
F—-G

be a morphism of algebraic spaces represented by schemes. Let P be a property
of morphisms of schemes which is local in the etale topology on the domain and
(faithfully) stable under etale, surjective base change, and if

V-G
is etale and surjective. Then the morphism of schemes
FxgV >V
has property P if and only if, for all etale surjective morphisms

X =G,
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X a scheme,

FxgX—>X
has property P.
Proof. Consider the diagram
FxgXxgV — XxgV
e vd 1
FxgX — X 4
! ! N
F — G
in which all squares are cartesian. Given that
FxgV >V
has P, then
FxgVxgX—=VxgX
has P so
FxgX—>X
does too because
XxgV—->X
is etale and surjective. |

Finally there is a rather deep result about “representing” locally separated alge-
braic spaces as analytic varieties in the case S = Spec (C):

Theorem 5.8. If R =2 U is a locally separated algebraic space, then via the quotient
topology on

U (Spec (C)) — gﬁﬁﬁiﬁ Eg; = F(Spec(Q)),
there exists a unique analytic structure on F (Spec(C)) making
U (Spec (C)) — F (Spec (C))
a local analytic isomorphism.
Proof. Based on the fact that, given that
R—->UxgU

is an immersion, then
R (Spec (C)) — U (Spec(C)) x U (Spec(C))

is injective and has the property that, for any point z € U (Spec(C)), there is a
neighborhood A of z such that

(Ax A)NR(Spec(C)) C A
where A is the diagonal of A x A. O



STACK THEORY AND APPLICATIONS 39

5.1. Global properties of algebraic spaces and morphisms.

Definition 5.6. An algebraic space F' is of finite type over S if there exists an

etale surjective morphism
U—F

with U a scheme of finite type over S.

Definition 5.7. The image of an algebraic space F'/S is the image of the morphism
of schemes given by the composition

U—>F—S§
where U — F is etale, surjective.

Definition 5.8. An algebraic space F' is proper over S if it is of finite type, sepa-
rated, and universally closed, that is, the image of all base extensions

F'> F
is closed in S.

Proposition 5.9. An (open, closed, locally closed) subspace G of an algebraic space
F' is an algebraic space G with a morphism

G- F
represented by (open, closed, locally closed) embeddings, that is, every fibered product

GxpX 5 X

{ {
G - F

has the property that o is an (open, closed, locally closed) embedding of schemes.

Suppose now that

G F
is an open subspace, then for the open subspace
V=UxrG

we have the diagram

R = UxpU

t s

Vv — u

\ {

G — F

Then
sTE(V)=t""(V)=RxyV.
Definition 5.9. An open subscheme V' C U is called invariant if
sTH(V)=t1 (V).
Exercise 5.1. V is invariant if and only if

V=s(tt(V)).
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Exercise 5.2. If V is an open subscheme of U then
s (71 (V)
is the smallest invariant open subscheme of U containing V.
Exercise 5.3. If V is an invariant open subset of U then
Ry=s'(V)=t"'(V)CR
is an equivalence relation on V, then
V/Ry - F
is an open embedding and
V=V/Ry xpU.
If, for sone algebraic space G we have that
V=GxrU,
then
G =V/Ry.
A foundational result of Grothendieck is:

Theorem 5.10. If R = U is an equivalence relation such that R and U are affine
and either map (and hence both maps) R — U is finite and flat, then

U/R
is an affine scheme.

Corollary 5.11. If F is an algebraic space of finite type over a noetherian scheme
S, then there exists an open dense subspace

G F

which is a scheme.

Proof. We have
U—F
etale and surjective with U/S of finite type. Then
R=UxpU—>U

is etale and of finite type and so quasi-finite. Now take the largest V' open in U so
that

TtV =V
is finite. Then V is invariant so that
VIV xpV
is an open dense subspace of F.
So by restricting to an affine dense V" in V' and setting

V=s(t"" (V")
we obtain by the Theorem 5.10 an affine open dense subscheme
G=V/V xpV.
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The above local and global properties of morphisms of algebraic spaces imply
that one can glue algebraic spaces together in the Zariski topology, that is, if

F=dq
is an equivalence relation in the category of algebraic spaces, then
G/F
is an algebraic space.
5.2. Hironaka’s example. Let X be a projective threefold with a fixpoint-free
involution
c: XX

and C C X is a smooth irreducible curve such that C and o (C) = C' meet
transversely at two points p and p’. For example X might be Pic? (Cy) for a
hyperelliptic curve Cy of genus 3,
c=y—=z
where x and y are distinct Weierstrass points of Cy and
C = z+ C()
Cl =y + C().

Let B be the variety obtained from X — {p'} by first blowing up C and then blowing
up the proper transform of C'. Let

g€ B

denote the point at which the proper transform E of the fiber of the first blow-up
over p meets the exceptional locus of the second blow-up. Let B LI B' denote the
disjoint union of two copies of B and define the (proper, smooth, non-projective)
algebraic variety

BLUB'
(beB)~(c(b) e B’

X =

Then o lifts to a fixpoint-free involution & on X. Let

12 ~

¢ = 6(q

E' = G(E).
There is no affine subscheme of X which contains both ¢ and ¢’ since its complement
would have to be a divisor which meets the curve

E+ FE

with positive intersection number. But E + E’ is numerically the zero cycle.
Now define the closed imbedding

R=XUX<XxX=UxU

where the map on the first component is the diagonal map and the second map is
given by (identity, ¢). This gives

F=U/R
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the structure of a separated, proper, smooth algebraic space with etale surjective
morphism

m: X > F
There exists a closed subspace
G F
with
{e.d't - X
{ NS
G - F

It is instructive to notice that no open neighborhood of the point G is a scheme
since, by shrinking, we could assume the scheme to be affine so that its inverse
image would be an affine subscheme of X containing ¢ and ¢'.

6. DICTIONARY

Definition 6.1. A prestack is a category fibered in groupoids over the category of
schemes such that, for all z,z' € €x, the functor

I:=1Isox (z,7'): X — Sets
is a sheaf with respect to a chosen Grothendieck topology.

A stack is a prestack for which “descent data is effective,” which roughly means
that, for each scheme X, the “functor”

¢: X — Sets
(F:5S—>X)— €
is a “sheaf” for the chosen Grothendieck topology.

Definition 6.2. A stack € is representable if there is a fully faithful, essentially
surjective morphism

U/R=e
for some algebraic space U/R. A morphism
¢
of stacks is representable if, for every morphism of stacks
U/R > ¢,
the fibered product
M Xer €

is representable.
Definition 6.3. A stack € is algebraic if:
i) the diagonal morphism
c—>¢ Xs ¢

is representable by a quasi-compact (separated) algebraic space;
ii) there exists a cover of € by a scheme, that is a scheme U and a representable
morphism

U—>¢
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such that, for every scheme U’ with

U —-ec,
the fibered product
UxeU'
is a cover of
U

in the chosen Grothendieck topology.

Corollary 6.1. Every algebraic stack € is of the form
Ux,U=U

for some scheme U. That is
R=2Ux,U.

Definition 6.4. An algebraic stack for the Grothedieck topology of etale maps is
called a Deligne- Mumford stack.

An algebraic stack for the Grothedieck topology of smooth maps is called an
Artin stack.

In the context of the last definition, it is useful to recall that all our schemes are
locally of finite type and to recall the Grothendieck criterion for smoothness
or etaleness of a map:

A morphism

f: XY

of schemes is smooth if and only if, given any local Artinian ring A and quotient
ring

A
B:=—
I
and commutative diagram
SpecB —» X
{ ¥,
SpecA — Y
there is a lifting
SpecA - X

making the full diagram commutative. The morphism f is etale if, for any diagram
as above, the lifting exists and is unique. The morphism f is unramified if, for any
diagram, there is at most one lifting.

Thus, for example, if € is an algebraic stack, a morphism

X=c

is smooth if, for every commutative diagram
SpecB Y, X
i ¥
SpecA ¢
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there exists a lifting
7 : SpecA — X
such that
| SpecB = ).

We say that the family X is versal at
B
* | Spee— ) .
v (spec? )

F : Schemes® — Sets

Notice that, if a functor

is to be a sheaf, there must be a well-defined set
F(S)
so that, if
f:85=+5
is an isomorphism, the induced isomorphism
F(f): F(S) > F(S)
is well-defined. Thus, for example, if

F=Hom(,X)

and, for all
s € Hom (S, X)

we have

s=s0f,
then it had better be that

F(f) =1ps)
If our schemes are over a field k. then the set
F (k)

is the set of “points” of X.

Definition 6.5. A separated algebraic space is a covariant functor

F : 6°— Sets
S — Hom(S,X)

such that
(0) F is a sheaf for the etale topology;

(1)
A:F > FxgF

is representable by a scheme;
(2) F has an affine cover in the etale topology.
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In short, an algebraic space is a functor X, such that there exists a representable
etale morphism from a scheme onto X. The scheme is not part of the data, the
functor is. And coherent sheaves on the functor can be described as coherent sheaves
on the scheme, by descent theory.

7. GROUPOID SCHEMES

For group actions of an affine algebraic group G on a scheme X we will have the
following informal dictionary

[X/G] a scheme
[X/G] an algebraic space

[X/G] a Deligne — Mum ford stack

[X/G] an Artin stack
[X/G] a separated Artin stack

A principal G-bundle structure is a locally trivial free group action with respect to
a specified Grothendieck topology. It is a theorem of Grothendieck that if a finite
group G acts freely on a scheme X , then the algebraic space [X/G] is a scheme.

X a principal G — bundle
G acts freely on X
G acts on X with fin. red. stabilizers
(e.g.if G finite)
G acts on X
G acts properly on X

[

Definition 7.1. A groupoid scheme is a pair of schemes

R, U
and (surjective) morphisms
s,t: R— U,
called respectively “source” and “target,” with an identity
e:U — R,

a multiplication
m:Rxy R— R,
and an inverse
i:R— R
satisfying the following five properties:
1. Identity inverts both s and ¢:

v =% R U - R
N s and NEv Lt
U U
2. Multiplication is compatible with both s and ¢:
RxyR % R RxyR % R
Im ls and 1po it
R 5 U R 5

3. Associativity: Commutative diagram
RXURXUR idR—x)m RXUR
Im xidg im
Rxy R LN U
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4. Unit condition: Commutative diagrams

R “28Y RxyR R “8" RxyR
N\R lm and R Im
R R
5. Inverse:
i0i = 4dg
soi =t
toi = s
and commutative diagrams
rR Y RpxyR R Y% RxyR
s lm and |t ym
v = R u - R

The groupoid scheme is etale, smooth, etc., if the seed morphisms s and ¢ are
etale, smooth, etc.

We should mention, in connection with the property 3 above, that there is a
natural isomorphism

RxyRxgpRxyR=(Rxy R)xy R=Rxy (Rxy R)

coming from the fact that R Xy R Xy R sits uniquely in the upper left and corner
of the following fibered product diagram

RxyR & R

Im 1s
RxyR 2 R AU
Ip ls

R LN U

Example 7.1. Our first example is a groupoid €, that is, a category whose only
morphisms are isomorphisms:

obj(€) = U
Mor (¢) = R
with
s:R—>U
(f:C1 = C) = C4
and
s:R—-U
(f:C1 = C3) = Cs
and
e:U— R
Cwide
and

m(fxyg)=gof
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and

i(f)=7"
Example 7.2. Our second example is an algebraic group action, that is, a scheme
U with a left action

c:GxU—-U
by an algebraic group G. We put
R=GxU, s=o0, t=pa.

To define m first notice that the domain is naturally just

GxGxU

because the latter space fits uniquely into the upper left-hand corner of the fiber
diagram
GxGxU B GxU
{23 lo
GxU & U

where

023 (gah7u) =(g7hu)
Then

(gahau) « (gah 'U) XU (hau)

and

m:GxGE@xU—->GxU

(9, h,u) = (gh,u)

and

i(g,u)= (97" u).

Example 7.3. We begin with a morphism of schemes

f:T—>S
and let
R = T'=TxsT
U =T
s = m
t = o
e = diag.: T - T xgT.

Again to define m, we notice via the cartesian diagram

TxsTxsT 25 TxgT
{ T2 im
TxsT EN T

we have
TxgT xgT = (TXST)XT(TXST).
(tl X ty X t3) s (tl X tg) XT (t2 X t3)
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So we can define

m = T3
p1 = T2
P2 = T23.

Then, for example, 2 of Definition 7.1 becomes the cartesian diagrams

TxsTxsT 25 TxgT TxsTxsT 2% TxgT
1 m2 ls and 1 ms3 1t
TxsT = T TxsT % T

And regarding 3 we have
TXSTXSTXST 721) TXSTXST
1 m134 I mis
TxgT xgT s TxsT
and for 4 we have

(eos,idr) (eot,idr)
— —

TXST TXSTXST TXST TXSTXST
\jdr im and N lm
TXST TXST

Finally define
1:TxsT—TxgT.
(t1,t2) — (t2,t1)
Example 7.4. This is the example that we will work with subsequently in these

notes. Notice that the formalism of Example 7.3 works for any fibered category F'
with a functor

U—>F
such that
UxpU
is representable, that is, is given by a functor
R.

So we can form a category whose objects are
R=3U :=(U,R,s,t,e,m,i)
and whose morphisms
(RR=U)> (R=3U)
are commutative diagrams
R % R
s |t sllt
v % U
and
R % R
Te te
U’ U

le
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and
R xR X RxyR
Im! im
R 2, R
and
R % R
1 bi
R % R

8. BASIC STACK CONSTRUCTION
8.1. Category built on a target groupoid scheme.

Proposition 8.1. Fvery Deligne-Mumford stack comes from an etale groupoid scheme.
In fact we have a functor

(R=2U) > [R=U]
from the category of groupoid schemes to the category of stacks.

We will describe the process of associating a DM-stack to a groupoid scheme in
several steps. Fix a groupoid scheme

R=U.
For each morphism of schemes
TS
define a category Fp_s by
Obj (Fr—s) = Mor (TxsT) =2 (R=U)),

that is, commutative diagrams

TwsT -5 R
7T1u71'2 Sut,
T % U
and
MOT(FT_>3) =
TwsT 2% R TesT -2 R
1 | o sllt = m || m sllt
T LN T N
given by a map
T.sT —% R
7T1“,7T2 Sut
T Y U
(27) v @
T.sT 2 R
m | 7o sllt
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for which

soa = ¢

toa = 1o
and

mo (aomy,¥s) =mo (¥y,ao0m)
We compose morphisms as follows. Given

a,pf:T—R
such that

toa=s50p0,
define

Boa=m(ap).

We then check that the composition

(1, U1) 25 (4o, U3) 25 (g, )
given by
m (e, 3)

is a morphism. First of all

som(a,f) = soa=1h
a,f) = tof =1
and then

m (m (a, 3) o7y, ¥3)

m(aomy,m(Bom, ¥s))
= m )
m
m

aomy,m(Ps, Bom

- )
- )

m(\Ill,aow2),ﬂo7r2
¥y,m(a,B) om).

Proposition 8.2. Fy_,g is a groupoid, that is, a category all of whose morphisms
are tsomorphisms.

(
(
(m(aom,¥s),B0msy
(
(

= m

Proof. First of all, there is an identity morphism

T.sT — R T.sT — R

m | o slilt = m || m sllt

T 4L U T 45 U
given by

a=eor
since
soeoth=toeoth =1

and

m(eo),¥) =T =m(T,eo0r)).
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So we need to find an inverse for

T.sT % R T.sT 23 R
7r1ll7r2 Sut=a>7r1ll7r2 Sut.
T X U T 2 U

To do this, we define
j:Rxy RSP Ry R
and note that
m (m (a,b),(moj)(a,b)) =m(m(a,b),m(i(b),i(a))) =eos=eot
and so, by the associativity property 3 of groupoid schemes,

m (((i om) (a,b) ,m(a,b)),(moj)(a,b)) = m((iom)(a,b),(m,meoj)(a,b))
(m o j)(a,b) (iom)(a,b).

If we put
B=ioa,
then

soioa = toa =1y

tojoa = soa=1
and

mo(ioaom,¥;) = iomoj(ioaom,¥y)
= j4omo(io¥y,aom)
= j4omo (Pyoi,a0m 01)

= jdomo (¥,a0m)od

(

(

(

= jdomo(aom,Py)oi

= domo (aoma,ioUy)
(

= jdomo (Uy,a0ms).
So
B=ioa
is the inverse morphism. O

8.2. Pullback and category F' = [R =3 U]. Given a commutative diagram of
morphisms of schemes

T = 9
4 4
T — S

there is an obvious pullback functor

Fr,s — Fris.
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Proposition 8.3. Given a groupoid scheme
R=U
there exists a fibered category
F=[R=U]
with
Fs =limFr_, g
s
where the limit is taken over all etale covers
TS5,
and, for
S1— S
we have
Mor (@Fn s, P, 52)
induced by maps
a:Ty x5, To > R

defining morphisms from the pullback of

Tl LA Tl — R
T i T2 sllt
T U

by
T1 XS, T2 2} T1

SiXxs, 8 - S

to the pullback of

T2 X So T2 E) R
m2,1 | ma2 st
T, 22y

T2

T, x S1 T —= Ty
\J 1

Si x5, 82 2 Sy
Example 8.1. Let
g:U—=+X
be a covering. Then given a covering

f:T' >T
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and an object

T x7T 2 UxxU

m | 7o st
T % U
Lf ly
T -3 X
Since
goYom =goyomy
we have

h:T—>X

induced by descent as in the proof of Proposition 4.2. (Notice that we do not need
that g be a cover for this.) Now the only morphism

T xr¢T' 2% UxxU T x¢T' 23 UxxU
7(1“,7(2 Sut 71'1“71’2 Su,t
T X oy > o ¥y
Lf lg 1f lg
T -3 X T -3 X
which works is over a given diagram
T T
h1 \l l/h2
X
is
a = (wla ¢2)
because of the conditions
soa = 1
toa = 1.

Then
[U xx U= U] =X.
Referring to Examples 1.8 and 7.2 we also have:

Proposition 8.4. If G is an affine algebraic group and U has a group action o,
then

[GxU=U]=[U/G].
Definition 8.1. If a stack
[v/Gl
is such that
(28) GxU AU xU

is a closed immersion, we call the stack an algebraic space. Notice that in this case
the action must be free in order that (28) be injective.
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It will turn out that, if G acts on U with finite stabilizers, then
[U/G]
is (isomorphic to) a Deligne-Mumford stack.

8.3. Dictionary. For stacks induced from groupoid schemes we will have the fol-
lowing informal dictionary:

groupoid scheme, s,t flat stack

=
s,t smooth, R (s—’t; U x U immersion <= [R =3 U] a locally separated algebraic space )
s,t etale = [R = U] a Deligne — Mumford stack

s,t smooth = [R = U] an Artin stack

Again it is a theorem of Grothendieck that, it s and ¢ are finite and etale, and
RYMUxu

is an immersion, the Deligne-Mumford stack [R = U] is actually a scheme.

9. M1,1 AS A DELIGNE-MUMFORD STACK

We next give the basic example of a stack in the etale topology. This is the
moduli stack of elliptic curves

M
that is, genus one curves with a marked point.
Es
Obj (My,) = wltes : Es smooth genus one over S € Obj (&)
S
Eg — Eg
Mor (M) = w1t es 7' 11 es doubly commutative
S - S’
M 1 is a category fibered in groupoids. In particular, over
(Ml’l)point

is the category whose objects are elliptic curves and whose morphisms are isomor-
phisms of those curves (preserving the distinguished zero, of course). Thus

Mor (Epointa Epoint)

is in general Z /27 but can be larger if E,y;n has non-trivial automorphisms.
We realize this stack as

[R= U]
as above where R 3 U is a groupoid scheme. To do this, let
U=A"—-{0,1}
and let
Ey CP*xU
be given by

(29) By = {(z.9,2,)) 15’2 =2 (z —2) (2~ \2)}
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with distinguished point

(0,1,0).
Next, letting
Y =es(9)
define the rank-2 vector bundle
O (2X).

Then
f:E— P:=P(r0g(2%)")

is finite and flat (by Grothendieck’s criterion for flatness). Then the line-bundle
section

df € Hom (Tgys, f*Tp)s)
has four simple zeros giving an etale divisor A of degree 4 over S. Clearly
A=A
where A’ is etale of degree 3. Define a stack J\;Il,l by

Obj (1,1) = {(B/S € My, 9)}

where ¢ is an isomorphism between A’ and an ordered set

¥, 118, 11 5,
of three disjoint copies of ¥. We have sections

esi: S = Y.
Proposition 9.1. There is a functor

M1,1 — My,
which is etale of order 6.
Proof. For

es1:S— My,

we find the fibered product

M, Xy, S
as the stack obtained by removing the (generalized) diagonal from

A'xg A xg A
This stack is etale of order 6 over S. O
Proposition 9.2. The stack whose objects are families
P—-S
of smooth rational curves together with an ordered set of four disjoint sections
¥, ¥1,%2, 33 CP
is isomorphic to
U="P'-{0,1,00}.
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Proof. Isomorphisms of P! are uniquely determined by 3 points. |

Thus via
f:E—P:=P(r.0g(2%)")

we obtain a morphism

o ]\Nll,l - U.
On the other hand, (29) gives a morphism
7:U — J\Zfl,l.
This last is etale of degree 2 as can be seen by defining
S = M 1,1
S = Y Xg¥i X5 Xg X3
and obtaining that
Uxy,, 88
is etale of degree 2 corresponding to the choice of
z(zx—1)(z—N).
Thus the obvious functor
U— M,
given by
(s N U) = (f*By) /S
factors as

U— M1,1 — My,

where the first morphism is etale of degree 2 and the second is etale of degree 6.
Recalling from Example 1.2 that, for the group scheme G' = p2 = {+1} we have
the stack

BG -+ 6
where
F—S
is a principle u-bundle, that is, we have an action
F x po — F
h Ve
S
We have
Obj (Buz2) = {Fs}
Mor (Bus) = Homp, (Fs,Fs)

= {Fs+— Sxs FL}.
Then the “section” o : Ml,l — U defined above allows the identification
Ux;U=DBpus
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and so the isomorphism
M1,1 =U x Bps.
More concretely, given

A Cc SxP!

7 !
S x {0,1,00,A} S x Pt

the branched double covers given by the inverse image of the tautological section
under a squaring map

(30) L— I? = Osx]pl (A)

comprise the objects of ]\Zfl,l and are classified by the non-trivial objects of Bus.
Notice that the structure sheaf of the branched double cover associated to a choice
of L is given by

Osxp1 ® L7"
with multiplication determined by the choice of preimage in (30):
(f,a)-(f',a) = (ff' +ad, fa'+ fla)
where the section aa’ of L=2 is identified with its image under the inclusion
L7 = Ogxp1 (=) C Ogxp1.

This leads us to the computation of

R=U ><1\41’1 U.
To compute R, we must understand all cartesian diagrams
Ey U
1 = , V.

Ey — Ey U L} 174
Such a diagram implies
E)\l = Ef’(/\’) = Ef(/\) = E)\.

Also deformations of families of isomorphisms of elliptic curves are unobstructed,
so that, given

(/\0,/\6) eUxU
and
(31) Qg : E,\;J = By,

there is a unique, smooth germ of a curve D C U x U passing through (Ao, Aj) such
that the isomorphism (31) extends uniquely to an isomorphism

E\ =2 E,

for all (A\,\') € D and any scheme in U x U over which (31) extends is locally
contained in D. Using this we check:
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Lemma 9.3. Let

MXN)eUxa,,U—UxU.
Any isomorphism

a : E\=ZEyx
(z,y) = (29
has the form
z = dWlz+r
1 u3y

for some u # 0 and some r.

Therefore we have six cases:

N a=u? d=4u?

= r
A 1 +1 0
1 1 +1 0
X X VAR
1-1 _1 +1 1
A A VS
1-A -1 +i 1
A 1 +1 z
A—1 1—-X (17A)3
1 =1 +i Az
1—A 1—X (l—k)s
Proof. Put
z! x
y | =AXNN) |y
2! z
Since
(0,1,0)
and
z=0
are preserved, we can assume
a 0 r
A= ¢ d e
0 01
Thus
= ar+r
Y = cx+dy+e.
Since points of order two must correspond under the isomorphism,
c-1+4e = 0
c-A+e = 0
so in fact
z = ar+r
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But
(d-y)> = (az+7)(az+r—1)(ax+r—N)
= d&.z@-1)(x-N
so that
B = &
a(Br-1-X) = d*(-1-))
a(rr—1-=XN)+(r—-1)(r-=X) = dx
rir=1)(r-=X) = 0.

Now we can put u = % is our scheme lies in the smooth scheme D defined above
so we have

(32) r = 0,1,X
Br-—1-X) = u?(-1-=))
r@r—1-X)+{-1@F-X) = au’\
Case: r = 0: Either
ax = MN,a=1
A=A
or
ax = 1, a=XN
1
ANo= <
A
so that (32) becomes
(33) A=A
w? o= 1
or
1
4 No= -
(34) ;
1
2 — —
ut o=
Case r = 1: Either
a-1+41 = XN, a-A+1=0
1
! = —_—
A= A
or
a-1+41 = 0,a-A+1=X
No= 1-2)
so that (32) becomes
1
! — 1 _ -
(35) A 3
1
2 — —_—
(36) u® = 3
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or
(37) N o= 1-2)
W = -1
Case r = X': Either
a-1+XN = 1,a-2+XN=0
A
No=
A—1
or
a-1+X = 0, ax+)\N =1
1
No= —.
1-A
so that (32) becomes either
A
38 No=
(38) o1
1
2 _
R
or
1
39 - -
(39) A T
-1
2 = —_—
“ 1— X
Lemma 9.3 allows us to list the components of R as follows:
N z! y' comp R
KA,
A T +y Spec ( U[L“I] )
1 1 + kA,
X X% ey Spec (A1E2f]1)
1 1 +i k[A\,u
(40) ].—X —X:E—i-l \/;—3 Sp€C<A£2+]1)
y k[’\v ]
1-X —zr+1 +iy Spec(u2+u1)

A 1 A +1 k[Au]
pe I e b ey Va—x? Spec <u2—u21;\—1)
1 +i k[, u]

= TRt T aoyY SPee (m)

so that four of the components

Ry1, Ry —1, Ri-xi, Ri—a—i
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map isomorphically to U via A and \. But for the other four u is a uniformizing

parameter and we have

1
fum A= —, N =u?

R% U oz
R,_1 Uturmr A= —, X =1+
X U
1
R x U:ur—>)\=1——2,1—u2
A-—1 u
1 .
R.:1i — U:Ui—))\=1+—2,)\'=—u2.
1—X u
Lemma 9.4.
Uxm, U=3U
is a groupoid scheme with
s = A
t = M.
Proof. First
e:U—R
is just the identity map to the component
A=XN,u=1.

Also
m:RxyR— R
is just the map induced by the composition of isomorphisms
(z,9) = (',y") = (&",4").
Similarly the inverse

i:R—> R
just sends
(z,y) = (&', y)
to
(@,y") = (z,9).
For example
z = 1 x+ A
D R R |
;o 1
y = 3 Y
1-=2X)
composes with
-1 1
LA e A P v
)
yll — yl
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to give
' = _1(1m+)\>+1
= X
1— 2 \1-2AX A—1 1-5%
= —-z+ 1
1
y' = =y
w/1___ ¢ V-
Also
¥ = —z+1
! — Zy
has inverse
¥ = —z+1
y = —iy
which allows us to compute the inverse of the transformation
T = Lm + L
D N
, 1
y = 3 )
(1-))
above. O
Notice that the stack
My # [U/G]
for any group G acting on a scheme U. If it were, we would infer that
R=GxU.
However we do have a closely related stack
M1 [2]

of level-two structures on elliptic curves. Here morphisms must preserve distin-
guished sections

e,h,h' : S — Eg
where h and h' go to distinct half-periods. Thus
R[2]
has only two components
R[2,, R, _,
with each map to U given by the identity. There is a natural morphism of stacks
Mi1[2] = M.
On the other hand, for
My,

5

+1
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obtained by equating two morphisms which differ by

(z,y) — (z,—y)
we find that R now has six components, each isomorphic to U and
My

= U/s]
where
1 1 id id—1
41 =3id, —,1—1 .
(41 59 {zd’id’ T a1 i }
The map
U—-U/S;
is given by
A2-x+1)°
A s ZAF L
(A(A=1))
since this mapping is 6 — 1 and invariant under the substitutions
1
A=<
A
A = 1=
Notice that S3 acts freely except when
1
X o= -1,2=
) b 2
A= —w
where
- _1 4 v-3
2 2
The isotropy groups for the action of S3 are respectively
I, = 7)2Z
I, = Z/3Z.
We will use all this to show that
M
(42) Pic ilil = 7,/27 x 7./3L.
A line bundle on the stack
M,
=1 - [U/Ss]
is just an Sz-invariant line bundle L_; on U and L descends to a line bundle on
U
Al = —
S3

if and only if I_; acts trivially on the fiber L_; and I_, acts trivially on the fiber
L_,,. Since all line bundles on A! are trivial, the morphism

(43) Pic]\ill’l = Z/27.x T/3Z
L — (I-1-> Aut(L_1), I_, = Aut(L_,))
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is injective. To see that it is surjective, consider, for the Weierstrass family
mn:E—>U
the bundle
A =mwg/.
Since
E_={y’=2"-1z}
the generator 7 of I_; is given by

7(2,y) = (—=,iy)

. (da:) dx
=] =i—.
Y Y

E_, = {y2 =2° - 1}
he generator ¢ of I_,, is given by

o (z,y) = (wz, —y)

. (da:) dx
=) =—w—.
Y Y

L =A?

and so

Similarly since

and so

Thus

gives a well-defined Ss-invariant bundle on U which maps to the generator of
Z[27 x Z/3Z under (43).
Said another way, we have Z /27 x Z/37Z ways of assigning never-zero functions

Do fino froxs fiyiexs Faa—1s ficaya
on U such that
(44) (fer o k) - fe = frron-
Basically we get these by letting
Ia

be any of the six functions in (41) and noticing that the rest of the assignments are
determined by the cochain condition (44).

Lemma 9.5.
P?:CMLl = Z/12Z

Proof. We begin with the line bundles A; and A, induced by the two pull-backs of
A to

R=UXM1’1U:§U.
We have and isomorphism

QDZA1—>A2
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induced by (40) which satisfies the cocycle condition. However
U - A
(A2-a+1)°
TNy 12
(A(A-1))

is not etale, so we can’t argue that by etale descent there is an induced line bundle
on Al.

Let

A~ —064

jll g Aut (Lfl)

()=()
H® (wp_,)

occurring on (40). that is, automorphisms of H® (wg_, ) induced by isomorphisms

be the group of automorphisms

of

E % E

i i

u = U
such that

a(-1)=-1.
From (40) we have

I, =17/4L.
Similarly

[, =7/6L.

We then consider the morphism
(45) PZ.CMl’l — Z/4ZXZ/QZZ/6Z
L (i,l — Aut (L_y), I — Aut (L,w))

with the image of A going to the generator of
7.]ATxg 1247 |67, = 7./ 127..

The proof that (45) is injective is that any L in the kernel does give flat descent
data for a (necessarily trivial) line bundle on Al and so must be trivial itself. [

10. Ho,n A DELIGNE-MUMFORD STACK VS. THE ARTIN STACK My,

We define Ho,n to be the Deligne-Mumford stack of flat families of stable n-
pointed connected curves of arithmetic genus 0. In fact My, is a projective variety.
If we eliminate the condition of stability, that is, if we remove the lower bound of
3 from the number of marked and crossing points on each component of the curve,
then the resulting stack, which we call M 5, is no longer Deligne-Mumford but only
Artin. To see this, notice that a forgetful map from the disjoint union

Uk MO,n+k - mo,n
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gives a smooth cover. (The domain is of course not of finite type). Notice that the
image of any fixed Mg, is a compact, open dense in Mg, so that My, is highly
non-separated. Already for the generic object

C € (gﬁoio)SpecC

we have that
Isom (¢,¢) =PGL(2)

so is not finite, meaning that My e cannot be a Deligne-Mumford stack. Notice
that the “points” (Mo,0) g, consist of all possible rational trees.
Another anomoly of the stacks 9 ,, can already be seen in the case of My ;. If

¢ — 9)?0’0
denotes the universal curve, we have a natural open inclusion
gﬁo’l - C

reflecting the fact that all points except crossing points can be marked points. On
the other hand it will turn out that there is also a morphism

¢ — f)ﬁoJ

which is generically the “identity” but “splits out” each crossing point in ¢’ into
a new component with a third distinguished point (all choices of which are equal
under I'som ({',(')). Notice that the composition of these morphisms is not the
identity.

If V is now a smooth projective manifold and 3 is a possible curve homology
class in V, we let

Mo,n (V7 ﬁ)

be the stack of 3-valued stable maps of n-pointed genus-zero curves to V' (non-stable
components are collapsed). We have a natural morphism of algebraic stacks

MO,TL (V7 ﬂ) — S):no,n

which “forgets about” V. This morphism is (strongly) representable as follows. For
a scheme S and a morphism

ﬁ — Sjt0,n
given by a family of curves C'/S, we have the fibered square

Mors (C,V xS) —» S

(46) ol I
MO,n(VwB) — gjtO,TL

where Morg (C,V x S) is just the relative Hilbert scheme.

11. DEFORMATION TO THE NORMAL CONE

11.1. Normal cones. Deformation to the normal cone, as used by Fulton and
MacPherson, plays an important role in their intersection theory of schemes, leading
to:

(i) Refined pull-backs of Chow groups under regular embeddings.

(if) A construction of the intersection ring of a smooth scheme.

(iii) A fast proof of Grothendieck-Riemann-Roch.
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Deformation to the normal cone is also constructed in general enough terms to
apply to Artin stacks (Kresch’s thesis), leading to the very important construction
of an intrinsic virtual class due to Behrend and Fantechi.

Let X be a scheme (of finite type over a field k). A sheaf of graded commutative
Ox-algebras with 1:
A =LA ..

is normally generated if it satisfies the following properties:
(a) The canonical map Ox — A° is surjective,
(b) A! is coherent,
(c) A% is generated by A for all d.

Example 11.1. Every normally generated sheaf of Ox-algebras is locally of the
form A[z1,...,2,] /I (I a homogeneous ideal) over Spec(A).

Example 11.2. If X C Y is a closed subscheme, then there are two normally
generated sheaves of Oy-algebras:
I* =0y ®I®I’®...
and
/I =0y I I/ ...

where 7 is the ideal sheaf of X in Y. The second sheaf is a normally generated
sheaf of Ox-algebras, as well.

Example 11.3. If F is a vector bundle on X, then:
S*(E):=0x®EaS*E)®...

is a normally generated sheaf of Ox-algebras.

Given a normally generated sheaf A® of Ox-algebras, we define:
(i) C := C(A®) := Spec(A®) is the associated affine cone over X,

(ii) P(C) := Spec(.A*®) is the associated projective family over X, and
(iii) P(C @ 1) := Spec(A[x]®) is the projective completion of C, where
Az]* =A@ ..o Az Az ..ol ...

These families come equipped with morphisms 7, p, ¢ respectively, to X, together
with a commuting diagram:

P(C) -5 PCel) < C

NP 7 'q

X

where 7 and j are complementary closed and open immersions, respectively.
There is a line bundle Op(¢)(1) on P(C) and surjective map

P*(AY) = Op(o)(1)
and in the case of P(C @ 1), the natural section:
5: Opcor) = ¢ A° = ¢*(A[z]') = ¢*(A’z @ AY) — Opcon)(1)
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satisfies Z(s) = P(C) C P(C & 1). So P(C) is an effective Cartier divisor in
P(C @& 1) (at least when the latter is a variety). More generally, it is always a
regular embedding of codimension one.

None of this is surprising if you think about it locally. In that case, suppose A°®
comes from A[z1,...,x,]/I over X = Spec(A). Then:

i) C = Spec(A[z1,...,x,]/I) C A% is an affine scheme over Spec(A).

ii) P(C) C P! is the projective scheme defined by I, and

iii) P(C & 1) C P? is defined by (I) (think of the extra variable as z).

The diagram
P(C) —» P1eC)

T
c

just locates P(C) and C as the loci o = 0 and z¢ # 0, respectively(!) No big mys-
tery here! One just has to check that the gluing produces the advertised morphisms
and line bundles.

In case A® = Z*/Z°*! (associated to a closed subscheme X C Y), we denote the
associated cone by Cx,y, and call it the normal cone of X in Y.

11.2. Geometric Realization of the Normal Cone. i) If X C Y has positive

codimension in every component, then P(Cx,y) is the exceptional divisor in the
blow-up ¥ of Y along X.

ii) P(Cx/y ®1) is always the exceptional divisor in the blow-up ¥ x P! of ¥ x P!
along the closed subscheme X x {o0}.

Let
€Y XxPL Y x P!
be the blow-down. Then ¢ (Y x {oc}) consists of two components. One is the

exceptional divisor P(Cx,y®1), and the other is a copy of X, which meets P(Cx,y®

1) along P(Cx,y). The intersection is also Cartier in Y, as it is the exceptional
divisor for that blow-up.

iii) We have the equality
Cx/y =€ Y x {o0}) =Y.
11.3. Elementary Properties of Cones. If C, D are the affine cones associated
to normally generated sheaves A®* and B°®, respectively, then
(a) If there is a surjective (graded) homomorphism
A* — B*
of Ox-algebras, there are associated closed immersions
D — C,P(D) — P(C)
and
PD®l) = PCa1)

compatible with O(1) and immersions ¢ and j.
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(b) The irreducible components C; of C' are affine cones associated to quotients
of A°®, corresponding locally to the quotients by prime ideals.

(c¢) The fiber product
CxxD
is the affine cone associated to the tensor-product Ox -algebra
A* ®0 X B*
(with appropriate grading). In particular, in case B®* = S*(E*) for a vector bundle
E on X, we let:

CeE:=CxxFE
and note that we have already seen a special case of this:
Cal=Ca®0x=CxA".
(d) It
f: XY
is a morphism, then the affine cone C' for the Ox-algebra f*.A4°® is the fiber product
C xy X, and likewise for P(C) and P(C & 1).

11.4. A Fundamental Example. Given a closed immersion ¢ : X — Y and an
arbitrary morphism f : V — Y, form the fiber product:

W — V
T
X 4 v

Let 7 and J be the ideals sheaves for X C Y and W C V, respectively. Then from
the surjective homomorphism:

ffT-J

we obtain quotients f*Z® — J* and f*(Z*/Z°*!) — J°*/J°**!, hence in particular
a closed immersion: Cy,y < Cx;y Xy V of schemes over V. If, in addition,
f:V =Y is a closed immersion, then we have a further closed immersion:

CW/V — Cx/y Xy V — Cx/y
The following theorem is now easy, but crucial!

Theorem 11.1. (Deformation to the Normal Cone) Given X C Y a closed im-
mersion, define a cycle map:

o:ZK(Y) = Zi(Cxyy); [VIe [Cwyv]
as above, extended by linearity. Then o(a) ~ 0 if a ~ 0, i.e. o defines:
7:Ap(Y) = Ar(Cx/y)
Example 11.4. If 7 : E — X is a vector bundle and z : X — FE is the zero section,

then Cx/p = E and 7 = (ident.) : Ax(E) — Ay (E), which we may see as follows.
Since the flat pull-back

T Akfe(X) — Ak(E)

is an isomorphism in this case, we need only compute & on varieties of the form
V =7 '(W). But on such varieties, Cy/v = Elw = V.
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It is more interesting to compute the inverse of the flat pull-back 7*, which we
denote by

2% Ak(E) — Akfe(X)-
This is given by
2*[V] = gu(ce(Q) N [P(Cynxyv @ 1)])

where @ is the universal quotient bundle on P(E @ 1). It is crucial to observe that
for fixed V, this map factors through

Ap—e(VNX) = Ap_o(X).

A closed immersion i : X — Y of schemes of finite type over a field is a regular
embedding of codimension d if it is locally defined by a regular sequence of length
d, or equivalently if

Cx;y = Nx)v
the normal bundle to X in Y. In this case, we use the deformation to the normal
cone to define the Gysin map for reqular embeddings:

1" =2"0: Ak(Y) — Ak,d(X)

where 2 : Y — N = Cx/y is the zero section of the normal bundle.
The Gysin map has various nice properties, including:

o If X intersects V transversally, then i*([V]) = [V N X] .
e If V is contained in X, then i*([V]) = ca(Nx,/y) N [V].
and in general, i*[V] factors through
Ap_a(VNX) = Ap_yq(X).
This notion is exploited in the definition of a refined Gysin map
it AR(Y') = Apa(X")

for any fiber square:

<
K]

X' - Y
N
X &4 v

which opens the door to many functorial properties, for instance:

(a) Refined Gysin maps commute with proper push-forward.
(b) Refined Gysin maps commute with flat pull-back.
(c) Refined Gysin maps commute with capping with Chern classes.
(d) Refined Gysin map commute with each other.
(e) A composition of refined Gysin maps is a refined Gysin map.
(f) Excess intersection. If i’ is a regular embedding (of codim d' < d), then
N' = Nxi/yr Cg*N = g*Nx,vy is a vector bundle inclusion and

i'(a) = ca-a (9" N/N') N ()" ()
(and similarly for "' in the presence of a further map Y — V)
If X and Y are schemes, we may define the exterior product:

Zp(X)® Zi(Y) S Zpp(X x Y)
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by setting [V] x [W] = [V x W]. This is defined on the level of Chow groups.
Now, suppose f : X — Y is an arbitrary morphism to a nonsingular variety Y
of dimension n. Then the graph of f gives

v X =5 X xY,

a regular embedding of codimension n, and via the Gysin map and the exterior
product, we may define:

zpy=75(TXxy)
and, in particular,
() =:(X] xy)
In case f is the identity map, we get the intersection pairing
x-y
and one checks that [V] - [W] factors through A.(V NW).

11.5. Intersection Theorem. The functorial properties of the refined Gysin maps
lead to the following:

Theorem 11.2. Let Y be a nonsingular variety of dimension n.

(a) Via the intersection pairing, A*(Y) = A,_.(Y) is a commutative ring with
[Y] =1, and the pull-back f* is a graded ring homomorphism.

(b) (Projection Formula) If f : X — Y is a proper morphism of non-singular
varieties, then

falz - fry) = ful@) -y
for all x € A*(X) and y € A*(Y).

12. CONE STACKS

12.1. Intrinsic normal cone. Recal that a cone C over a scheme X is an affine
surjective morphism

f:C—-X
such that
f[iOc:=Agd A1 @ ...
where
Ox = Ao

is surjective (always an isomorphism in our applications) and .4; is a coherent
Ox-module with the induced map

Sym?A; — Ag
surjective for each d > 0. Cones of the form
E = Spec(Sym.A;)
will be called abelian cones. We have a natural abelianization functor
CrH A(C)
and a natural imbedding
C— A((C).
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An abelian cone is always an abelian group scheme with addition
ExxE—E
given by the coaddition
A= A ®ox A
given by the diagonal map.
Example 12.1. Suppose we have a closed immersion of schemes
i: X =Y
where 7 is the ideal sheaf defining X in Y so that we have

Cx\y = Spec (@dzo (Id/l'd+1))

Nx\y = Spec (@dzo Sym? (I/ZQ)) .
If we happen to have a situation in which a map of abelian cones
E— A(C)
factors through C, then E acts on C' we can form a stack
[C/E]

as discussed in previous chapters. Recall from Example 1.8 that if we have a scheme
X with a group action by a group G we associated a stack

[X/G]
and functor
X = [X/a].
In this instance the group is £ and the scheme is C. Thus we have
C—|[C/E]

The cover
CIZEXXC—)C

is a smooth surjective (affine) map so this stack is an Artin stack . In fact it is a
groupoid scheme.

Example 12.2. Suppose that, for the closed immersion
i: X =Y

in the previous example we add the additional condition that ¥ be smooth. Then
letting J denote the ideal of the diagonal

ACY xY

we can pull Z = Zx back to A via one of the projections
mT: A=Y

and we have induced
7= 3,

and so a natural map
II™ = 33 La k) = Sym? Qv |x -
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Thus we have
E: =Ty —» C.
The commutativity of

I - I®Ja

1 1
Jla Ja ® 3la

gives the Ty-action on Cx\y.
The central result we are after is the fact that the normal cone-stack

[Cx\v/ Ty|x]

is intrinsic to X, that is, this stack (as a stack over X) does not depend on the
smooth scheme Y into which we choose to embed X.

Example 12.3. Let
X CA™

be a hypersurface defined by a single polynomial f. We then map

- _ {7} ,
[f=————+df € Qun
{f2} A |X
and for the action
TleXC—>C

we map
frdfel+10fe (QUn|y®1) 0 (10T/T7).
So at points where df = 0 the action is trivial.

Proposition 12.1. i)

[C/E]
is the Artin stack associated to the groupoid scheme
Exx(C=C
where
s = action
t = projection.

it) The category
Obj [C/E];.5 . x

is the set of pairs consisting in a principal E/X-bundle E'/S together with an
E/ X -equivariant map

E'|S = C.
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Further we have a zero-section
0: X=>C
and an Al-action (rescaling the cone) given by
Al xC—C
given by
474 - k(2] @ 7479
fireoofa oo R f1. - fa
Also we have from Examplel.8 we have

- ExxC —

C
\ .
— C — [C/E]

< < It

We shall use E xx C as the locally trivial smooth (one-set) affine cover of C in
order to do descent arguments. Also we will need the following Cone Lemma:

Lemma 12.2. i) Any commuting diagram of actions

E X FE
ld ld
c 4 ¢

induces a morphism of stacks

e+ [C/E) — [C'/E.

it) Given a cone morphism

k:C—FE
and defining

P = ¢+kod

¥ = g+dok,
then

E % F

Id id

c % ¢

gives a natural isomorphism of functors

/e =Y/

(Compare with (27).)
iii) If the commutative diagram in i) is cartesian and

CXXEI—)CI

is surjective, then ¥ /¢ is an isomorphism.
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Proof. i) The point is that the diagram

EXXC i) E'XXCI
s=d || t =proj. s'=d ||t =proj.
c ¥, c'

is a morphism of groupoid schemes as in Example 8.1 and, as such, gives a morphism
of stacks as in Proposition 8.1 by descent. (The fact that we have a morphism of
group actions is compatibility of cocycle conditions necessary for descent.)

ii) In fact Proposition 8.1 gives a functor from the category of groupoid schemes
to the category of stacks. This means that a morphism

R — R
U U
v —- U

of groupoid schemes gives a morphism
[R=3U]= [R' = U"

of stacks and a two-morphism

R —- R
U U
v - U
v
R — R
U U
v - U

(see 27) gives a natural transformation between morphisms of stacks, which in this
case looks like

(p,9)

Exx(C % E' xxC
U U
c 4 c'
) 7 (k)
ExxC (ﬂ) E' xx ('
U U

where
s'o(k,¢) = Y+dok
m((k,¢)os, (p,¢) = (kod+p,¢).
This is a 2-isomorphism since it has an inverse
p = P—kod
v = ¢Y—dok.
iii) We first reduce to the case in which

c=C
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is surjective by noting that we can replace
E-C
with
ExxE - CxxFE'

without losing either of the hypotheses. The assertion then follows by descent.
Namely, given a diagram

EXXC - C

(47) ¥
C

there is a unique minimal object that can fill in the lower right-hand corner to make
a cartesian square, namely

[C/E].
So, if we can show that the diagram is also minimally cartesian if we fill in with
[C'/E']

then the two are isomorphic by a unique isomorphism. To see this let “[I” denote
that a diagram is cartesian and consider the following expanded diagram

EXXC — C
A O \:
E' X)(C - FE Xx c' - (o
\ G \ o 1
c - O o [C/E

Notice that we use the surjectivity of
C -
to get surjectivity of
C — [C'/E"
which assures minimality. O

Theorem 12.3. IfY is smooth, then, up to canonical isomorphism,

[Cx\v/ T¥|x]

depends only on X, that is, is independent of the choice of the smooth scheme Y
into which X is embedded.

Proof. We can reduce to the case of comparing

Y
i

(48) X )
i\

A

in the case in which there is a smooth surjective morphism p relating ¥ and Z via
the above commutative diagram since any two embeddings ¢ and j of X can be



STACK THEORY AND APPLICATIONS 7

compared in this way with the embedding into the product space Y x Z. So we
assume the situation of (48). Now let

T,

be the fiber tangent bundle for p. We apply Lemma 12.2 to the commutative
diagram of actions

0 = Tply = Tzlx — Tyly — 0
(49) 3 [ o )

0 — TPlX — Cx\z — Cx\y - 0

by noticing notice that the square of [ is cartesian and its bottom horizontal map
is surjective. [l

13. h'/h°-RESOLUTION OF INTRINSIC NORMAL CONE

Given the data of a morphism

et e
from a coherent sheaf to a locally free coherent sheaf, we let
Eo = Spec(Sym¢?)
E, = Spec(Sym¢€™)

be the corresponding abelian cones. So we have a cone-stack

[E1/Eo) =: (h' /1) (€°)
given by the action

FEy — Ei.
Lemma 13.1. Given a morphism
p: € —3°

of data as above, and corresponding morphism

@ : [F1/Fo] — [E1/Eo]
of cone stacks,

i) P is a representable morphism of Artin stacks (in the sense of algebraic spaces)
if and only, for the maps
h (o) H' (€*) = H' (3*)

hO () is surjective;

i) if h° () is also injective and h=" (p) is surjective, a representable morphism
@ is a closed immersion,

iii) P is an isomorphism if and only if ¢ is a quasi-isomorphism.

Proof. i) Suppose h° (i) is surjective. We first show that it suffices to consider only
the case

p:E >3
with

e =30,
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To see this, choose a vector bundle & such that we have a surjection
G —»F!
and replace €* with
¢cleods a0
so that we have the diagram

¢l - o6
{ 4

31 BN 30
with both vertical maps surjective and
[E1/Eo] = [(E1 ® G) [ (Eo © G)]
by Lemma 12.2. Let
A=ker(F'oc’a6 3.
Then we have the cartesian diagram

A - &gpe
{ 1
gt - 3

Thus
[K/ (Eo ® G)] — [F1/Fy]

is an isomorphism by Lemma 12.2 since, by construction, we have the cartesian
diagram

FO - B

4 \
EybeoG —» K

with
Eo@G@Fl—)K

surjective. Thus we are reduced to considering only the case

p:€E > 5
with
¢? =3°.
Then Ey = Fy.
What we must show is that, for any algebraic space S and morphism
S
i)

[F/Fo] = [Ei/E)
we can find algebraic space W and cartesian diagram

Wxx Fy — SXXEO

I Vo,
F — E;
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that is, a cartesian diagram
w - S
1 i

[Fi/F] = [Bi/Eo
But using
S — [E1/ Eo]
we can let the fibered product

E()XSXEIFl — E0XXS

1 |
F — Eq

be acted on (freely) by Ey = Fp to give W the cartesian square
[(EO x S X E1 Fl) /Eo] — [EO X S/Eo]
\ \

[F1/Fo] - [B1/E]
Conversely suppose h° () is not surjective. Then neither is the map of vector
bundles
¢0 5 30,
Let S be a Zariski open subset of the support of the cokernel on which it is locally

free. Since everything is natural under pull-back to S, we can assume that S = X
and

Fy — Ey
has non-trivial vector-bundle kernel. In fact by shrinking S we can assume that
FO - EO

+ }
Fi - E;

is a commutative diagram of constant-rank morphisms of vector bundles such that,
for

0 - K—=Ey—E
0 - LK —K
exact, the induced map
L—+ K

has non-trivial (vector-bundle) kernel M. Then E; /Ey and F} /F are just vector
bundle schemes and the constant-rank morphism of vector bundles

F/Fy = E, | Ep.
But there is no
WX
such that, as a morphism of stacks
WxxFy — E

\ {
F - B
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is cartesian, since
W xx Fy = F1 xg, Eo
always has kernel containing
w Xx M.

i) If hO () is also injective and h~! (p) is surjective, then, as above, we can
assume we have a diagram
ht(e*) — et = € - hA(e)
(50) | surj. Lot I 7
hl (&o) - 8;—1 N eO N hO (3;0)

! ig also surjective so that

Fl—)El

so that, by the Snake Lemma, ¢~

is a closed immersion. So
Fl /EO — E]_ /EO
is a closed immersion.
iii) In (50) ¢ is a quasi-isomorphism if and only if it is an isomorphism. O
14. BASIC EXAMPLE

Suppose we have the following cartesian diagram of scheme maps

x Lov

bg B S

Yy 5 W
where V and W are smooth and

1Y =W

is a regular embedding, that is, Y is a closed subscheme of W defined by an ideal
J given by a regular sequence (Ici). Let

€*: g* Ny — §* 0
defined by the natural maps

g*N¥\W — (iog)" Q%/V — ]*Q%/

Let

I=fJ
be the ideal defining X in V and put

3 =g
where

LTI = j* 0.
This gives the morphism of cone stacks

[Cx\v/i*Tv] — [E1/Eo]
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which is a closed immersion since, in the diagram
* \TV rx ()1
g Ny\W - 7Oy

J surj. T
T/7? - 0

we have that

h? ()
is an isomorphism by construction and
h~ (p)

is surjective since ¢! is.

In ths situation, we also have a cartesian diagram
z:V = g*"Ny\w
is a regular embedding given by the zero section of a bundle of rank d. So we can
use Fulton-MacPherson intersection theory to construct a virtual fundamental class
by intersecting the image of
Cx\v
with the zero section to obtain the class
2 (CX\V) € Acodim Cx\v+d (x)
in the Chow ring of X. This class will only depend on the cone stack
[Cx\v/Eo)
and will be called the virtual fundamental class.

15. THE CASE OF MODULI STACKS

Our problem will be to put a virtual fundamental class on
M :=Mor (C,V)={c:C =V}
where V is a smooth projective manifold and C' is a Gorenstein curve. Now M is
realized as a closed (therefore proper) subscheme
Mor (C,V) C Hilb , (C x V)

of virtual dimension

x (¢* (Tv))
where p is some fixed Hilbert polynomial given by choosing a polarization of V.

Putting

MxC(W—’f))MxV

and letting

W:i=WMxC/M
denote the pull-back of the dualizing line bundle of C, Behrend and Fantechi define
a morphism
RHom (Rm (f*Tv),Om) = Rrx (RHom (f*Ty ,w))

1
Rge
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where £° is the cotangent complex associated to a closed embedding
M<=Y
with Y smooth. The problem is then to find a Y and a two-term complex of bundles
@
giving Rm. (RHom (f*Ty,w)) in the derived category and with a commutative
diagram
N L

(51) 1 surj. 1=
7/7? - QY

This proceeds roughly as follows. For example, let
M = MO,O (Va /8)

denote the Deligne-Mumford moduli stack of stable maps of zero-pointed curves of
genus zero into the smooth projective manifold V. We have a diagram

c =V
I
M

Let L be an ample line bundle on V' and let w;, denote the relative dualizing sheaf.
Stability implies that

we ®e*L?
is relatively ample. For N >> 0,
T Ty (e* (TV ® LN)) —e* (TV ® LN)
is surjective. Let K denote the kernel of the surjection
e LN @ r*m. (e* (Ty @ L)) — Ty.
Then applying R, to the exact sequence
0 K—se' LN@r*n (e* (Ty ® LV)) = Ty = 0

we obtain —

0 mTy & R'mK = R'm, (e*L™N) @ m, (e* (Ty ® LV)) = R'm.Ty — 0.
Thus we have that, since
R'n,K — R'm, (e*L_N) Q Ty (e* (TV ® LN))
is a complex of vector bundles
RHom (Rm. (f*Ty),Oun)
is just the complex of vector bundles
e =7 ('L ®w;) @R (e* (Ty ® L) ® wyr) = mu (KY @ wyr)

Before we can see how to map (51) is constructed, we need to return to the
cotangent complex. The basic idea of the cotangent complex is to associate to any
morphism

f: XY
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of schemes a complex
L ]
X/Y

(in the (bounded) derived category) which plays the role played by the sheaf of
relative differentials (in degree 0) in the case in which f is a smooth surjective
morphism. The complex £5 % has, in general, only non-positive terms and

HO ( 3(/1,) = Qx/y-

Also, for any sequence of maps

x Ly 4z
we have an exact triangle
[L5)7 - X/
N e
X/v

derived from the exact sequence
f*QY/Z — QX/Z — Qx/y — 0.

When
f: X W

is a closed embedding with ideal Z, we have a mapping of complexes
0 — I/Iz — QW |X
Lo
- £y W £% W
yielding an isomorphism at H°. If in addition Y is smooth, then

ker (Z/2° = Qwly) = H ' (Shyw) -

In fact £%/y is defined for any (strongly) representable morphism of algebraic

spaces
[ X—->W.
In our case
X = Moo (V,0)
W = Moo

and the morphism f is the forgetful morphism given in (46) . Somehow f will be a
closed embedding in the smooth stack g, of dimension —3.



84 STACK THEORY AND APPLICATIONS

16. INTERSECTION THEORY IN STACKS

The prototype for a stack is a linear algebraic group G acting on a projective
variety X giving a quotient stack

X =[X/q].
Examples are ﬁg,n and ﬁg,n (X, B). Fundamental consequences of the theory are:
1) Every coherent sheaf on [X/G] is a quotient of a locally free sheaf.

2) There is an intersection theory (Totaro-Edidin-Graham).
The idea is that there is a vector bundle

¢ - X

with an open sub-algebraic-space € C & which is dense in every fiber (in fact the
codimension of the complement of €° in € can be made large). For example, take
a faithful representation

GCGL(W).

Then the action of G on V = W®" is free on an open set V° with complement of
high codimension. Then

¢ =[X x WG]
becomes a vector bundle on X and we put

¢ =[x xV°q].
Definition 16.1. We define Chow groups

Ak (x) = A* (€9).

These Chow groups have all the usual properties.

Example 16.1.
= GL(n)
= pt.
BGL (n)
= ()"
= {bases of C"}

T2 om < Q
|

Then
_ Zlca,--- 5 cn)
{relations in deg > N}’

Since these relations are in very high codimension we conclude
Qlk (%) ZZ[Cl,... ,Cn].

Ar (%)

Lemma 16.1. If
T:§—>X
is a vector bundle, then the natural map
7 AR (%) = AR (F)

is an isomorphism.
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Proof. We have the diagram

F - F
\: \
X - X

where F is a G-equivariant vector bundle. Choose V and V© as before. Then we
still have a quotient vector bundle

FxVY o FxV%G

{ {
XxV0 o5 XxV9@G

so pull back is still an isomorphism of Chow groups since Chow groups descend
under a free action. O

16.1. Defining h'/h°. Suppose X is a Deligne-Mumford stack and we have a
morphism

F° - F!
of vector bundles over X.
Definition 16.2.
(1 /10) "] = ([F'/F°] = X).
Theorem 16.2. (Kresch) The pullback map induces an isomorphism
a0 (X) - 4 ([F1/F)).

Proof. (Idea) For the diagram

Ft % [F'/FY]

1° 1

X = X

p* is an isomorphism of Chow groups. One must show as above that ¢* is too. [

Now suppose that
Lx
is the cotangent complex. L% is locally of the form
7
R i Qum|x =0
where X — M is a closed embedding and 7 is the ideal sheaf of X in M.

Definition 16.3. A (perfect) obstruction theory is a diagram

E-' o EO
la™t Lo
1% - QM|X

such that the E? are vector bundles on X and a° is an isomorphism and a~! is

surjective.
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Given a perfect obstruction theory, apply Hom ( ,Ox) to get
F° - F!
T T

Tulxy — Nx\m
In fact, taking Spec of the induced maps
S*E-1 — S*E°
bat }a®
230 7 = ST Quly
we obtain
F° - F!

1 ap T
TM|X - CxM

with ag an isomorphism and «a; injective. This diagram gives
Cx = [Cx M/ Tulx] C h*/h° (F*).
Now
dimCx =0

since

dim Ty|y = dim Cx M.
Lemma 16.3. If

F° — F!
is a morphism of vector bundles over a space X, then
™ A (X) - A* ([F'/F°])
is an isomorphism.
Proof. Consider the diagram
F° — FOxyxF!

= 4
o - !

Then
F'=[F° xx F'/F?]
is a vector bundle over
[P /).
So
A* ([F'/F°]) = u* ([F® xx F'/F°]) =2 u* (F') = A* (X).
O

Definition 16.4. The virtual fundamental class of E* is the unique class a €
2A* (X) such that 7* (a) = [Cx M/ Twm|x].
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So
dim (@) = dim€x — (rankF' — rankF°)
= rankE° — rankE 1.

Example 16.2. Suppose X is smooth. Then we have the diagram

E' - E°
1 \
0x — Qx
so that
Cx =[0x/Tx]
and
F° o F!
1= 1
Tx — O0x
so that
cokernel (F'O — Fl) =F!
and

a = cpopF™t.

Example 16.3. Suppose X is defined by a cartesian diagram

X = Y
L) ¥
P < M

where P, M, and Y are all smooth. Let J denote the ideal of P in M and Z be
the pullback ideal defining X in Y. Then we have

fh=E1 5 Oy =E

bat }a®
% - QY|X
where q is the composition
* j *
fﬁ—)f Qumlp = Qvlx-

This gives

Tylx & f*Npwu
1 ao ta;
Ty|X — C)(Y

where the top map factors as
Ty|x = f* Tmlp = [*Np\u-
So
Cx =[CxY/ Ty|x] Ch' /W (Ty|x = f*Np\u) -



