New Stabilities for Graded Modules

I-70 Algebraic Geometry

October 28, 2018
1 Gieseker Stability
1. Gieseker Stability

2. Regularity
New Stabilities for Graded Modules

1. Gieseker Stability
2. Regularity
3. Bridgeland
New Stabilities for Graded Modules

1. Gieseker Stability
2. Regularity
3. Bridgeland
4. Questions
Hilbert Polynomials

Let \mathcal{F} be a coherent sheaf on \mathbb{P}^n, let

$$M_\bullet = \bigoplus \Gamma(\mathbb{P}^n, \mathcal{F}(d))$$

be the associated module over $S = \mathbb{C}[x_0, \ldots, x_n]$ and let:

$$\chi_{\mathcal{F}}(d) = \chi(\mathbb{P}^n, \mathcal{F}(d))$$

be the Hilbert polynomial of \mathcal{F}. This is discrete invariant: constant on flat families over a connected base. Moreover:

$$\deg(\chi_{\mathcal{F}})$$

is the dimension of the support of \mathcal{F} and \mathcal{F} has pure dimension m if $\deg(\chi_{\mathcal{E}}) = m$ for all $\mathcal{E} \subseteq \mathcal{F}$.
Gieseker Slope

\(\chi \) is computed by the Hirzebruch-Riemann-Roch Theorem:

\[
\chi_{\mathcal{F}}(t) = \deg(ch(\mathcal{F}) \cdot td(\mathbb{P}^n) \cdot e^{tH})
\]

where \(ch(\mathcal{F}) \), \(td(\mathbb{P}^n) \) and \(H \) are cohomology classes on \(\mathbb{P}^n \). Thus:

\[
\chi_{\mathcal{F}}(t) = \text{rk}(\mathcal{F}) \cdot \frac{t^n}{n!} + \text{lower order}
\]

The Gieseker slope of \(\mathcal{F} \) is:

\[
\mu_{\mathcal{F}}(t) = \frac{\chi_{\mathcal{F}}(t)}{\text{leading coefficient}}
\]
Definition. (a) \mathcal{F} is Gieseker/Simpson stable if:

(i) \mathcal{F} is pure-dimensional and (ii) For all proper subsheaves $\mathcal{E} \subset \mathcal{F}$,

$$\mu_{\mathcal{E}}(t) < \mu_{\mathcal{F}}(t)$$

as polynomials in t

(b) \mathcal{F} is semi-stable if pure-dimensional and there is a filtration:

$$0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_N = \mathcal{F}$$

with each $\mathcal{F}_{i+1}/\mathcal{F}_i$ stable of the same slope.

Remark. (Semi)-stability are open conditions on flat families.

Theorem (Gieseker/Simpson). For fixed Hilbert polynomial χ, there is a projective moduli space $\mathcal{M}_{\mathbb{P}^n}(\chi)$ parametrizing equivalence classes of semi-stable sheaves of Hilbert polynomial χ.
Examples.

\(n = 1 \). The only stable sheaves are line bundles \(\mathcal{O}_{\mathbb{P}^1}(d) \) and skyscraper sheaves \(\mathbb{C}_p \).

Remark. Minimal rank pure-dimensional sheaves are stable.

\(n = 2 \) Any Hilbert scheme of ideal sheaves.

Note. Stable points of the moduli spaces \(\mathcal{M}_{\mathbb{P}^2}(\chi) \) are smooth. This is because stable sheaves are simple, and:

\[
\text{Hom}(\mathcal{F}, \mathcal{F}) = \mathbb{C} \cdot \text{id}
\]

and Serre duality give the vanishing of obstruction spaces.

\(n \geq 3 \) “Pathological” moduli spaces abound. (Murphy’s Law).
The Gieseker slope

\[\mu_{\mathcal{F}}(t) = \frac{\chi_{\mathcal{F}}(t))}{\text{leading coefficient}} \]

is not a good slope when evaluated at any \(t \). However:

Theorem. (Altavilla, B, Mu, Petkovic) The rational function:

\[\nu_{\mathcal{F}}(t) = \frac{\chi_{\mathcal{F}}(t)}{\chi'_{\mathcal{F}}(t)} \]

defines a one-parameter family of Bridgeland stability conditions on the derived category \(\mathcal{D}^b(\mathbb{P}^n) \) of coherent sheaves on \(\mathbb{P}^n \).

In particular, \(\nu(t) \) defines a good slope with quasi-projective moduli for coherent sheaves of Castelnuovo-Mumford regularity

\[k = \lfloor t \rfloor \]
Regularity

Definition. \(\mathcal{F} \) is \(k \)-regular if:

\[
H^i(\mathbb{P}^n, \mathcal{F}(k - i)) = 0 \text{ for all } i > 0
\]

Basic Properties. (i) If \(\mathcal{F} \) is \(k \)-regular, then it is \(k + 1 \)-regular.

(ii) \(\mathcal{F} \) is \(k \)-regular if and only if \(\mathcal{F}(k) \) is generated by global sections with linear syzygies, i.e. \(\mathcal{F} \) has a free resolution:

\[
0 \rightarrow \mathcal{O}_{\mathbb{P}^n}(-k - n)^{a_n} \rightarrow \cdots \rightarrow \mathcal{O}_{\mathbb{P}^n}(-k)^{a_0} \rightarrow \mathcal{F} \rightarrow 0
\]

or, equivalently,

\[
\mathcal{F} = [\mathcal{O}_{\mathbb{P}^n}(-k - n)^{a_n} \rightarrow \cdots \rightarrow \mathcal{O}_{\mathbb{P}^n}(-k)^{a_0}] \in D^b(\mathbb{P}^n)
\]
Consider the example of the ideal sheaf of three points $Z \subset \mathbb{P}^2$.

(a) If the points are not collinear, then I_Z is 2-regular, and:

$$0 \to \mathcal{O}_{\mathbb{P}^2}(-3)^2 \to \mathcal{O}_{\mathbb{P}^2}(-2)^3 \to I_Z \to 0$$

(b) If the points are collinear, then I_Z is not 2-regular and:

$$\mathcal{O}_{\mathbb{P}^2}(-4) \to \mathcal{O}_{\mathbb{P}^2}(-3)^3 \oplus \mathcal{O}_{\mathbb{P}^2}(-2)^3 \oplus \mathcal{O}_{\mathbb{P}^2}(-4) \oplus \mathcal{O}_{\mathbb{P}^2}(-3)$$

is the resolution. But both are 3-regular with resolution:

$$\mathcal{O}_{\mathbb{P}^2}(-5)^3 \to \mathcal{O}_{\mathbb{P}^2}(-4)^9 \to \mathcal{O}_{\mathbb{P}^2}(-3)^7$$
The following theorem was a precursor to stability conditions:

Theorem (King ’91) Let

\[A_k = \{ F^\bullet = [\mathcal{O}_{\mathbb{P}^n}(-k - n)^{a_n} \to \cdots \to \mathcal{O}_{\mathbb{P}^n}(-k)^{a_0}] \} \]

be the (abelian) category of complexes. Then any assignment:

\[z_i = z(\mathcal{O}_{\mathbb{P}^n}(-k - i)[i]) \in \mathbb{H} \]

defines a GIT quotient space for the action of \(G = \prod GL(a_i) \) on complexes with dimension vector \(a = (a_n, \ldots, a_0) \) in which:

\[F^\bullet \] has a GIT-stable orbit iff \(\arg(\sum z_i b_i) < \arg(\sum z_i a_i) \)

for each dimension vector \(b \) of a subcomplex \(E^\bullet \subset F^\bullet \).
Consider the resolution of 3 non-collinear points in \mathbb{P}^2

$$\mathcal{O}_{\mathbb{P}^3}(-3)^2 \rightarrow \mathcal{O}_{\mathbb{P}^3}(-2)^3 \in \mathcal{A}_2$$

According to the Theorem of King, we assign two complex vectors:

$$z_1 = z(\mathcal{O}_{\mathbb{P}^3}(-3)[1]) \text{ and } z_0 = z(\mathcal{O}_{\mathbb{P}^3}(-2)) \in \mathcal{H}$$

then we have a GIT quotient of the space of complexes. We need:

$$\arg(z_1) > \arg(z_0),$$

and then F^\bullet is stable if it has no subcomplexes with any of the dimension vectors: $(1, 0), (2, 0), (1, 1), (2, 1), (2, 2)$

Ideal sheaves are then stable, as are the sheaves:

$$\epsilon : 0 \rightarrow \mathcal{O}_l(-3) \rightarrow \mathcal{F} \rightarrow \mathcal{O}_{\mathbb{P}^2}(-1) \rightarrow 0$$

for lines $l \subset \mathbb{P}^2$ and non-trivial extension class.
Our Theorem

The more precise version of our Theorem is:

Theorem. The assignment:

$$z(F^\bullet) = \chi_{F^\bullet}'(t) + i\chi_{F^\bullet}(t) \in \mathbb{C}$$

on complexes maps objects of $\mathcal{A}_{[t]}$ to $\mathbb{H}i$.

Proof. Since $\chi(\mathcal{O}(t)) = (t + 1) \cdots (t + n)/n!$,

$$\chi(\mathcal{O}) = 1 \text{ and } \chi'(\mathcal{O}) > 0$$

$$\chi(\mathcal{O}(-i)[i]) = 0 \text{ and } \chi'(-i)[i]) < 0$$

for all $i = 1, \ldots, n$. Moreover, as $t \downarrow -1$, the values:

$$\chi(\mathcal{O}(-i)[i]) \text{ move clockwise, staying within } \mathbb{H}i$$
For $t \in (1, 2]$ the stable objects in \mathcal{A}_2 with class $\chi = \chi_{I_Z}(t)$ are:

(i) Ideal sheaves of 3 non-collinear points and

(ii) Sheaves \mathcal{F} from the earlier slide

Where are the ideal sheaves of collinear points? They are 3-regular, and the sheaf inclusion:

$$\mathcal{O}_{\mathbb{P}^2}(-1) \subset I_Z$$

is an inclusion of complexes that is destabilizing when

$$\nu_{\mathcal{O}_{\mathbb{P}^2}(-1)}(t) \geq \nu_{I_Z}(t)$$

i.e. when $t \leq 2 + \sqrt{6}$. After that, it no longer destabilizes!
Twisted Cubics

The Hilbert scheme of twisted cubic curves contains:

- I_C the ideal sheaf of a twisted cubic
- $I_{E \cup p}$ plane cubic and general point
- $I_{E \cup p^*}$ point in the same plane as E

The latter two have subsheaves:

- $I_p(-1) \subset I_{E \cup p}$ and $\mathcal{O}_{\mathbb{P}^3}(-1) \subset I_{E \cup p^*}$

that destabilize the respective sheaves up until:

- $t \approx 6.24$ and $t \approx 7.47$, respectively

Schmidt and Xia have shown that these are the only “walls” for χ (at which the stable objects change) and they used this to recover the description of the Hilbert scheme due to Kleiman and Piene.
Questions about \mathbb{P}^n

We can easily show that if $F^\bullet \in D^b(\mathbb{P}^n)$, then:

(i) If F^\bullet is not a sheaf, then $F^\bullet \not\in \mathcal{A}_k$ for large k, so in particular, F^\bullet is not stable for large t.

(ii) If \mathcal{F} is not pure-dimensional, then it is unstable for large t.

(iii) If \mathcal{F} is Gieseker unstable, then it is unstable for large t.

Question. If \mathcal{F} is Gieseker stable, then is it stable for large t?
(True for $n = 2, 3$.)

Difficulty. It is hard to “see” the subcomplexes of a complex!
Are there other varieties X for which:

$$z = \chi'(t) + i\chi(t)$$

define stability conditions on $D^b(X)$?

And if so, what are the analogues of the categories A_k?

Examples. All Riemann surfaces (“rotated” standard stability).
All algebraic surfaces of positive signature $K_S^2 > 8\chi(O_S)$.
Odd dimensional quadrics (with varying exceptional collections).

For surfaces of signature zero, we can get “close:”

$$z_\epsilon(t) = \chi'(t) + i\chi(t) - \epsilon\chi''(t)$$

define stability conditions for $0 < \epsilon << 1$ and it seems to be an interesting question to study the analogues of A_k for, e.g. Hirzebruch surfaces.