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1 Introduction

The aim of these notes is to give a quick introduction to Python as a language
for doing computations in number theory. To get an idea of what is possible, we
first observe that Python can be used as a calculator. Imagine that we are using
our portable unix laptop, logged in as student. The first step is to type the
command python. Then we type the actual python code. Here is an example:

student% python

>>> 2**1000

10715086071862673209484250490600018105614048117055
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33607443750388370351051124936122493198378815695858

12759467291755314682518714528569231404359845775746

98574803934567774824230985421074605062371141877954

18215304647498358194126739876755916554394607706291

45711964776865421676604298316526243868372056680693

76L

>>> 2**1000 % 1001 # compute remainder

562L

<control-D>

student%

We first computed 21000. Then we computed 21000 mod 10001: that is, we
compute the remainder of 21000 upon division by 1001. This is done using the
operator %. Thus 5 % 2 is 1. The suffix L stands for “long integer.” Python
can handle integers of arbitrary size, limited only by the available memory. To
exit Python, type control-D.

One consequence of our computation is that 1001 is composite: a theorem
of Fermat states that if n is an odd prime, then 2n−1 is congruent to 1 modulo
n. Thus it is possible to prove that a number can be factored without actually
factoring it. In section 6 we discuss an algorithm that implements this “Fermat
test” very efficiently.

Consider next the fundamental problem of factoring an integer into primes.
One can do this by trial division. Given n, divide by 2 as many times as
possible, then by 3, etc. Record the factors found, and stop when there are no
more factors to be found — when the running quotient equals one. A Python
implementation of trial division is given by the code below.

>>> def factor(n):

... d = 2

... factors = [ ]

... while n > 1:

... if n % d == 0:

... factors.append(d)

... n = n/d

... else:

... d = d + 1

... return factors

...

As soon as the function factor is defined, we can use it:

>>> factor(1234)

[2, 617]

>>> factor(123456789)

[3, 3, 3607, 3803]
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>>> factor(12345678987654321)

[3, 3, 3, 3, 37, 37, 333667, 333667]

In the definition of factor it is important to be consistent about indentation.
We used two spaces for each level of indentation. The dots ... are typed by
Python.

We will study the code for factor in detail in section 3. For now, however,
let us note two important features. The first is the while construction. This is
a loop which repeatedly performs certain actions (the indented text below the
line beginning with while ). The actions are repeated so long as the condition
n > 1 is satisfied. The second feature is the use of if ... then ... else

... statements to make decisions based on program variables. If d divides n

we do one thing (add d to the list of factors, divide n by d. If it does not divide
n, we do something else (increase the trial divisor d by 1). The if ... then

... else ... construct is a conditional. Loops and conditionals are basic to
all programming.

Another way of defining functions is recursion. A recursive function defini-
tion is one that refers to itself. The function which computes n! = 1 ·2 ·3 · · · (n−
1) · n is a good example:

>>> def factorial(n):

... if n == 0:

... return 1

... else:

... return n*factorial(n-1)

>>> factorial(3)

6

>>> factorial(100)

933262154439441526816992388562667004907

159682643816214685929638952175999932299

156089414639761565182862536979208272237

58251185210916864000000000000000000000000L

For more information on Python, consult the on-line tutorial by Guido van
Rossum [3], explore the python.org web site, or consult the O’Reilly books on
Python.

Exercise 1 Experiment with Python: try some computations using it as a cal-
culator, then enter the code for factor and experiment with it. Use control-C
to abort a computation if it takes too long.

Exercise 2 Devise and test a function fib(n) which returns the n-th Fibonacci
number Fn. Fn is defined by the initial conditions F0 = 1, F1 = 1 and by the
recursion relation

Fn = Fn−1 + Fn−2.
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2 Python as a calculator

Let us look at some more examples of Python used as a calculator. The com-
ments (preceded by “#”) explain some of the fine points of the computations.

>>> (2 + 3)*(5 - 22)

-85

>>> 5/2 # note integer division

2

>>> 5/2.0 # decimal point for floating point arithmetic

2.5

We can also do arithmetic with complex numbers:

>>> z = 1 + 2j

(1+2j)

>>> w = z**2

(-3+4j)

>>> abs(w)

5.0

>>> w.real

-3

>>> w.imag

>>> 4

One can also say z = complex(1,2) to construct 1 + 2j.

It is easy to set up variables and use them in computations. We illustrate
this by computing our bank balance after 10 years, assuming just an initial
deposit of $1000 and an interest rate of 5%:

>>> balance = 1000

>>> rate = .05

>>> balance = (1+rate)**10*balance

>>> balance

1628.894626777442

We could also simulate the balance in our account using a while loop:

>>> balance, rate = 1000, 0.05

>>> year = 0

>>> while year <= 10:

... print year, balance

... balance = (1 + rate)*balance

... year = year + 1
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...

0 1000

1 1050.0

2 1102.5

3 1157.625

4 1215.50625

5 1276.2815625

6 1340.09564063

7 1407.10042266

8 1477.45544379

9 1551.32821598

10 1628.89462678

In any case, it is wise to invest.

As noted in the introduction, we can define new functions. Consider, for
example,

f(x) = x2 modulo 101

It can be defined in Python by

f = lambda x: x*x % 101

or by

def f(n):

return x*x % 101

The first expression assigns the lambda expression lambda x: x*x % 101 to
the name f. A lambda expression consists of two parts. The first part, from
lambda to the colon tells us what the list of independent variables is. The second
part, following the colon, is an expression which defines the function value.

Whichever style of definition we use, f defines a secquence of numbers {xn}
by the rule

xn+1 = f(xn)

where x0 is given. For example, if x0 = 2, find, calculating by hand, that
{xn} = {2, 4, 16, 54, ...}. The same computation can be done in Python as
follows:

>>> f(2)

4

>>> f(_) # _ = result of last computation

16

>>> f(_)

54

>>> f(_)

88
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We could also use a loop to compute elements of the sequence:

>>> while k <= 10:

... print k, x

... x = f(x)

... k = k + 1

...

0 2

1 4

2 16

3 54

4 88

5 68

6 79

7 80

8 37

9 56

10 5

The orbit of x0 = 2 under f is the largest nonrepeating sequence x0, x1, x2, . . . , xn.
What is the orbit in this case?

Python supports many data types besides integers, long integers, floating
point numbers, and complex numbers. Among the other types are strings, lists,
tuples, and dictionaries. See [3]. However, lists are especially important, so we
consider them now. To begin, we set up a list L and then add an element to it.

>>> L = [11,12] # two-element list

>>> L.append(13)

>>> L

[11, 12, 13]

>>> primes = [ ] # empty list

>>> primes.append(2)

>>> primes.append(3)

>>> primes.append(5)

>>> primes

[2, 3, 5]

We can add lists, assign the result to a new variable, and compute the length
of a list:

>>> L2 = L + primes

>>> L2 # display L2

[11, 12, 13, 2, 3, 5]

>>> len(L2) # length of list

6
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We can also work with individual list elements:

>>> L[0]

11

>>> L[0] = -1

>>> L

[-1, 12, 13]

One way of constructing lists is to use range:

>>> L = range(1,10)

>>> L

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Think of range(a,b) as the list with elements x satisfying the inequalities a

<= a < b. With a for-in loop one can scan through all elements in a list,
performing an action which depends on the current element. We illustrate this
in the next example, which computes a table of square roots:

>>> from math import sqrt

>>> for x in range(0,10):

... print x, ":", sqrt(x)

...

0 : 0.0

1 : 1.0

2 : 1.41421356237

3 : 1.73205080757

4 : 2.0

5 : 2.2360679775

6 : 2.44948974278

7 : 2.64575131106

8 : 2.82842712475

9 : 3.0

Note that in order to use the sqrt function we had to import it from the math

module. If we had wanted to import all of the functions in math, we would
have said from math import *. For a description of the Python modules, see
python.org/doc/current/modindex.html.

Another useful feature of Python is the ability to apply a function to all
elements of a list. In the example below we use map to apply lambda x:x*x to
the list range(0,10). The result will be a list of squares.

>>> map( lambda x: x*x, range(0,10) )

[1, 4, 9, 16, 25, 36, 49, 64, 81]
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Exercise 3 Experiment with Python as a calculator.

Exercise 4 Find all the orbits of f(x) = x2 mod 101 on the set {0, 1, 2, . . . , 100}.

3 Case study: factoring

Let us now study the code for factor, which we will call factor1 in this section.
To begin, we read through the commented version below:

>>> def factor1(n): # def sets up definition

... d = 2 # set trial divisor d to 2

... factors = [ ] # set list of factors to empty list

... while n > 1: # loop while n > 1

... if n % d == 0: # does d divide n?

... factors.append(d) # if so, append d to list of factors

... n = n/d # then divide n by d

... else: # otherwise,

... d = d + 1 # increase the trial divisor by 1

... return factors # loop complete, return list of factors

...

Every function definition begins with def, followed by the name of the function
and a parenthesized list of its arguments, its independent variables. This is the
line def factor1(n). Most function definitions end with a statement of the
form return <foo>, where <foo> is the value computed from the arguments.
In our case the last statement is return factors. The intent is to return a list
of prime factors of n. To do this we set the trial divisor d to 2, and we set the
variable factors to the empty list [ ]. The main part of the code is the while

loop. So long as n > 1, certain actions are performed. First, if n is divisible
by d the trial divisor d is appended to the list of factors. Then n is divided by
d and the quotient stored in n. If n is not divisible by d, the trial divisor is
increased by 1.

Note the consistent use of indentation (two spaces per level) to exhibit the
structure of the code, and note the use of colons after statements that begin a
new level.

The algorithm used to design factor1 can be improved considerably. First,
we can divide n by as many 2’s as possible, then do trial division by successive
odd numbers beginning with 3. This should speed up factorization by a factor
of two. The code below illustrates this improvement.

def factor2(n):
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d = 2

factors = [ ]

while n % d == 0:

factors.append(d)

n = n/d

d = 3

while n > 1:

if n % d == 0:

factors.append(d)

n = n/d

else:

d = d + 2

return factors

But one can do far better still. If n has a factor, it has a factor d ≤ √
n.

You should prove this for yourself. As a result, trial division can stop as soon
as d2 > n. The code below illustrates this improvement.

def factor3(n):

d = 2

factors = [ ]

while n % d == 0:

factors.append(d)

n = n/d

d = 3

while n > 1 and d*d <= n:

if n % d == 0:

factors.append(d)

n = n/d

else:

d = d + 2

if n > 1:

factors.append(n)

return factors

You should think about why the code fragment

if n > 1:

factors.append(n)

is necessary.

Let us digress for a moment on the running time of algorithms, which we
measure in seconds or some proportional quantity such as years. Inputs are
measured by their information content, that is, by the number of bits needed to
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specify them. The number of bits needed to specify a positive integer n is just
the number of binary digits needed to express it. Thus 123 in binary is 111011,
so it is a 6-bit integer. In general the number of bits in n is about B = log2 n.

Most of the time in running the various versions of the factoring code above
is spent in trial division. Thus a rough estimate of the running time T1 for
factor1 is

T1 ∼ number of trial divisions× time per division.

The amount of time needed to divide (or multiply) B-bit integers is proportional
to B2. The number of divisions required in factor1 is about n in the worst
case. Thus

T1 ∼ CB2n,

where “∼” means “roughly equal to.” Since n = ekB with k = log 2, where the
logarithm is the natural one this can be written as

T1 ∼ CB2ekB ,

where C > 0 is a constant. In the second version we must do about half as
many trial divisions, so

T2 ∼ CB2(n/2) = (CB2/2)ekB

The third version is much better: at most
√

n trial divisions are required, so

T3 ∼ CB2√n = CB2e(k/2)B .

To better interpret these running time estimates, use the inequality x2 < ex for
x ≥ 0 to obtain

T1 ∼ Ce(k+1)B (1)

T2 ∼ (C/2)e(k+1)B (2)

T3 ∼ Ce((k+1)/2)B (3)

Thus all versions of our factoring algorithms have so-called exponential running
times.

Reducing the coefficient of B in the exponential is much more significant
than reducing the constant C. This we know by pure thought, and our theory
is confirmed by the data below. Times are in seconds, run on a 2002-vintage
laptop.

N factor1 factor2 factor3 factorization

12345678 0.137 0.056 0.00066 [2, 3, 3, 47, 14593]

123456789 0.031 0.014 0.0176 [3, 3, 3607, 3803]

123456787 1.448 0.628 0.00178 [31, 31, 128467]

1234567898 123.9 53.9 0.0156 [2, 61, 10119409]
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We will show in section 5 how to produce timing data like that displayed in
the above table. In any case, there is clearly much to think about. In particular,
can we factor numbers with hundreds of digits?

The estimates just given are upper bound on the running times. Any algo-
rithm can be analyzed to give an upper bound on the computational complexity
(number of bit operations) needed to compute a quantity. A better algorithm
gives a better upper bound. It is much harder to get lower bounds on the com-
putational complexity. However, one lower bound is clear. The number of bit
operations must be at least equal to the sum of the number of bits in the input
and the output. This is the case of instantaneous computation. Thus a lower
bound on the running time is CB. In this case we say that the running time is
linear in the input size. Many algorithms, e.g., long multiplication of positive
integers, have polynomial running times: multiplication of two B-bit integers
runs in time CB2. Thus there is room for improvement, and in fact there are
faster, though very complicated algorithms.

Exercise 5 In light of the above discussion, estimate how long it would take to
factor numbers with one or two hundred digits.

Exercise 6 Devise a function isprime(n) which returns 1 if n is prime, 0 if
it is composite.

Exercise 7 Devise a function gcd(a,b) which computes the greatest common
divisor of positive integers a and b. Use the Euclidean algorithm. Estimate the
running time of gcd.

Note. Try both iterative and recursive implementations of gcd.

4 Loops and conditionals

As noted earlier, loops and conditional statements are the core of all machine
computations. Let us therefore study these constructs more closely. To begin,
we consider the problem of computing partial sums of infinite series, e.g., the
harmonic series. Thus let

h(n) = 1 + 1/2 + · · ·+ 1/n

and consider the corresponding Python code.

>>> def h(n):

... sum = 0

... for k in range(1,n+1):

... sum = sum + 1.0/k

... return sum

11



...

>>> h(10)

2.9289682539682538

>>> h(100)

5.1873775176396206

The expression range(n+1) creates the list [1, 2, 3, .., n] — the list of integers
k such that 1 ≤ k < n + 1. To compute h(n) we first set the variable sum to 0.
Then, for each k in the given range, we compute sum + 1.0/k, and store the
result in sum. Finally, we return the result as the value of h.

The computation in the preceding example is driven by a for-in loop.
The loop body — the set of actions to be repeated n times — is indented by a
consistent amount, in this case two spaces. The loop body, which in this case is
the single statement sum = sum + 1.0/k can be a whole paragraph, or block,
possibly with many levels of indentation. The example below, which computes
partial sums of the alternating harmonic series

g(n) = 1− 1/2 + 1/3− 1/4± · · ·

illustrates this.

>>> def g(n):

... sum = 0

... for k in range(1,n+1):

... if k % 2 == 1:

... sum = sum + 1.0/k

... else:

... sum = sum - 1.0/k

... return sum

>>> g(10)

0.64563492063492067

>>> g(100)

0.68817217931019503

Note again the consistent, linguistically significant use of indentation, of which
there are now three levels. The if-then-else statement determines whether
the current term is to be added to or subtracted from the running sum. Test
for equality is always expressed by == . Assignment of a value to a variable uses
= .

The else clause in a conditional statement is optional, and one can also
have optional elif clauses to express more than two choices, as in the example
below.

if <condition 1>:

<action 1>
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elif <condition 2>:

<action 2>

else:

<action 3>

Constructions like this can be as long as you please.

In addition to the for-in loop, there is the while loop, already used in the
code for factor. We could have just as easily used it for the previous problem:

>>> def g(n):

... k = 1

... sum = 0

... while k <= n+1:

... if k % 2 == 1:

... sum = sum + 1.0/k

... else:

... sum = sum - 1.0/k

... k = k + 1

... return sum

...

>>> g(1000)

0.69264743055982225

Here the variable k acts as the loop counter. If you forget the statement k =

k + 1 which increments the counter, then the loop is infinite and the code will
run forever. To terminate a loop which has run too long, type control-C.

Exercise 8 Define a function sum(f,a,b) which returns the sum

f(a) + f(a+1) + ... + f(b)

where a <= b and where f is an arbitrary function of one variable. Test your
definition of sum using

>>> sum( lambda n: n, 1, 10 )

and related expressions. Then calculate the sum

1 + 1/22 + 1/32 + 1/42 + · · ·

to an accuracy which you find satisfactory. Is it possible to find an exact answer
for this infinite sum? Consider also the alternating sum

1− 1/22 + 1/32 − 1/42 ± · · ·
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Exercise 9 Define a function search(f, x1, x2, y1, y2) which prints a list
of all solutions to f(x,y) == 0 for integer vectors (x,y) where x1 <= x <= y,
y1 <= y <= y2. Here f is an arbitray function from pairs of integers (x,y) to
the integers, e.g., pell2 = lambda x,y:x*x - 2*x*y - 1. This is the func-
tion we would use to study Pell’s equation

x2 − 2y2 = 1.

Use your code to find solutions to Pell’s equation. A typical call to the function
f would be search( pell2, 0, 1000, 0, 1000). What is the running time of
this algorithm? Can one do better?

Exercise 10 Let f be a function from a set S to itself. Let x0 be an element
of S. Define a sequence {xn} by the rule xn+1 = f(xn). Define the orbit of x0

under f to be the shortest non-repeating sequence {x0, x1, . . . , xn}.
Devise a function orbit(f,a) to return a list representing the orbit of a

under f. Use it to study orbits of f(x) = a ∗ x modulo 101 for various a. What
are their lengths? What other questions do your findings suggest? Pursue these
questions and report on them. Be alert to ways of efficiently automating the
computations your questions suggest.

Hints and possible ingredients: Use a list to build up the orbit, beginning
with the empty list [ ]. To check whether an element is already in the list, use
an expression of the form if x not in L:

Exercise 11 Devise an iterative definition of the function factorial(n). In
other words, use a loop, not recursion.

5 Files

It is convenient to separate the functions of running and editing Python code.
To do this, use a text editor such as emacs to store and modify the code. As an
example, we create a file factor.py for factoring positive integers.

# file: factor.py

def factor3(n):

"""factor3(n) returns a list of the prime factors of n"""

d = 2

factors = [ ]

while n % d == 0:

factors.append(d)

n = n/d

d = 3
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while n > 1 and d*d <= n:

if n % d == 0:

factors.append(d)

n = n/d else:

d = d + 2

if n > 1: factors.append(n)

return factors

Then we can do the following:

student% python

>>> from factor import factor3

>>> f = factor3

>>> f(1234567)

[127, 9721]

>>> f(123)

[3, 41]

>>> f(123123123)

[3, 3, 41, 333667]

>>> f(123123123123123)

[3, 31, 41, 41, 271, 2906161L]

The import command reads in all of the definitions made in the file factor.py

— just one in this case — so that they can be used as if the user had typed
them in. To cut down on typing we have assigned factor3 to the variable f.
To see what the line after def containing the triple quotes does, try this:

>>> print factor3.__doc__

factor3(n) returns a list of the prime factors of n

It is good practice to document functions at they same time they are written.
Documentation strings can contain more than one line.

Let us look at some other ways to use files. Consider the test file below,
which is used to print factorizations of the twenty numbers 1000 through 1019:

# file = test.py

from factor import factor3

def test(n):

print " ", n, "==>", factor3(n)

print

for k in range(1000,1020):

test(k)

print
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We can then try this at the command line:

student% python test.py

The result is the output below:

1000 ==> [2, 2, 2, 5, 5, 5]

1001 ==> [7, 11, 13]

1002 ==> [2, 3, 167]

1003 ==> [17, 59]

1004 ==> [2, 2, 251]

1005 ==> [3, 5, 67]

1006 ==> [2, 503]

1007 ==> [19, 53]

1008 ==> [2, 2, 2, 2, 3, 3, 7]

1009 ==> [1009]

1010 ==> [2, 5, 101]

1011 ==> [3, 337]

1012 ==> [2, 2, 11, 23]

1013 ==> [1013]

1014 ==> [2, 3, 13, 13]

1015 ==> [5, 7, 29]

1016 ==> [2, 2, 2, 127]

1017 ==> [3, 3, 113]

1018 ==> [2, 509]

1019 ==> [1019]

It would be still more convenient to be able to issue commands like python

test.py 1000 20 to construct tables like the one above: a table of factoriza-
tions of twenty numbers starting with 1000. That way we don’t have to edit the
code to do a new example. The version of test.py displayed below shows how
to do this. Briefly, we import the sys module which gives access to arguments
like 1000 and 20 that are typed on the command line. This is done through the
list of arguments sys.argv. The arguments — the list elements — are strings,
and so have to be converted to long integers using the long function.

# file = test.py

import sys

from factor import factor3

def test(n):

print " ", n, "==>", factor3(n)
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a = long( sys.argv[1] )

b = long( sys.argv[2] )

print

k = a

while k < a + b:

test(k)

k = k + 1

print

The name sys.argv consists of two parts: the module sys named in the import
command and the name argv defined in that module. Contrast this with the
names from the module factor: we imported factor3 but no others using
from factor import factor3. Note that it is the file factor.py from which
factor3 is imported.

As a final illustration, we show how to create a system-level command factor

which prints a table of factorizations. The idea is to be able to say

student% factor 1000 20

at the command line. To do this, first add the line

#! /usr/bin/env python

to the head of the file. (It must be the first line). Then type the following:

mv test.py factor # change name of file to "factor"

chmod u+x factor # make the file executable

mv factor ~/bin/scripts # put it in standard directory

mv factor.py ~/bin/scripts # put factor.py there too

rehash # update list of commands

You have set up command called factor in your bin/scripts directory. Here
we assume that this directory exists and is in your search path.

Timings

Let us conclude this section with a discussion of how to time the execution
of Python code. To this end, let us imagine that the definitions of the three
factoring methods discussed in section 3 reside in a file factormethods.pyunder
the names factor1, factor2, and factor3. Then the code in file file =

timings.py below.

# file = timings.py
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import sys, time

from factormethods import factor, factor2, factor3

n = long( sys.argv[1] )

a = time.time()

result = factor1(n)

b = time.time()

print "1: ", b - a

a = time.time()

result = factor2(n)

b = time.time()

print "2: ", b - a

a = time.time()

result = factor3(n)

b = time.time()

print "3: ", b - a

print n, "==>", result

The function time imported from module time returns the time in seconds of
a system clock.

Exercise 12 Put one of your previous programs into a file and try the various
ways of executing it described above.

Exercise 13 Improve the command factor so that (1) if it takes no arguments,
a message describing its usage is printed; (2) if it takes one argument, e.g.
factor 1234567 it prints the factorization of that number, (3) if it takes two
arguments, e.g., factor 1234567 10, it prints a table, as before.

Exercise 14 Devise a function doc such that doc(f) displays the documen-
tation for f.

6 Case study: the Fermat test

In section 3 we saw how trial division could be implemented in Python. The
resulting code for factoring an integer runs in exponential time relative to the
size in bits of the number to be factored. This code also gives an exponential
time algorithm for determining whether a number is prime:
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isprime = lambda n: len(factor3(n)) == 1

The function isprime returns 1 if the argument is prime, 0 if it is composite.
This is because the value of an expression of the form <a> == <b> is 1 if <a>
and <b> are equal, and is 0 otherwise. Such expressions are called Boolean.
Here is a short test of isprime:

>>> for n in range(2,8):

... print n, isprime(n)

...

2 1

3 1

4 0

5 1

6 0

7 1

We can also use isprime to make lists of primes:

>>> filter( isprime, range(2,100) )

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,

43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

>>> len(_)

25

# there are 25 primes < 100

The value of an expression of the form filter(f, L) is a new list whose ele-
ments are the elements x of L such that f(x) == 1. You should take the above
example as an illustration of Python’s filter function. A much better way of
creating lists of primes is to use the sieve of Eratosthenes (c. 276 - c. 194 BC).

We will now study a way of testing whether a number is composite that is
much, much faster, so long as it is implemented efficiently. The idea is to use a
theorem of Fermat:

Theorem 1 If p is a prime and a is not divisible by p, then ap−1 ≡ 1 mod p.

Thus we could define a function ft (for Fermat test) as follows:

>>> ft = lambda n: 2**(n-1) % n == 1

One could then test ft as follows:

>>> filter( ft, range(2,100) )

[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
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43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

>>> len(_)

24

# 24 numbers < 100 pass the Fermat test

It seems as though the Fermat test is pretty good: the numbers that passed
the test are all prime. Also, while 2 failed the test, this failure is consistent
with the theorem, which applies to primes other than 2. Nonetheless, one
should also be careful: the theorem is really a test for compositeness, not for
primality. (Numbers which pass the Fermat test have been called “industrial-
grade primes.”) In light of these comments, you should do the next exercise
before proceeding:

Exercise 15 Are there any numbers n < 1000 which pass the Fermat test, but
which are composite? Said in other words: what is the defect rate for production
of industrial grade primes?

Let us now turn to the question of implementing the Fermat test in an
efficient way — one so efficient that we can use it to demonstrate that very
large numbers are composite. For example using a good implementation, we
find, essentially instantaneously, that

>>> ft(367129485367127143774839380041017394964020200854210369)

0

The given number is therefore composite. Yet the factorization methods studied
so far fail to find prime factors in a time bounded by this author’s patience.

For an efficient implementation, we use successive squaring with reduction
modulo n to compute expressions of the form ak mod n. We illustrate the
method for 3100 modulo 101. First compute the binary expansion of 100 by
repeated division by two. The work is recorded in the table below:

quotient remainder

-------- ---------

100 0

50 0

25 1

12 0

6 0

3 1

1 1

0

Thus the binary expansion of 100 is 1100100. Thererefore

100 = 1× 26 + 1× 25 + 0× 24 + 0× 23 + 1× 22 + 0× 21 + 0× 20
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Thus
3100 = 326 × 325 × 322

.

Observe that
32n+1

= (32n

)2

Thus the powers of three that we need for the computation can be obtained by
repeatedly squaring the number 3. If we reduce modulo 101 at each stage, the
numbers stay under control:

q r s

-----------

100 0 3

50 0 9

25 1 81

12 0 97

6 0 16

3 1 54

1 1 88

The columns q, r, s stand for quotient, remainder, and (repeated) square,
where the squares are taken mod 101. Now we multiply together the repeated
squares associated with binary digit 1:

3100 = 326 × 325 × 322 ≡ 88× 54× 81 modulo 101.

The result is
88× 54× 81 = 384912,

which taken modulo 101 is 1. The table, by the way, was generated using
Python:

>>> a = 100

>>> s = 3

>>> for k in range(0,7):

... print a, a % 2, k, 2**k, s

... a = a/2

... s = s*s % 101

...

Note that no numbers larger than 1002 appear in the course of the computation.

It is easy to translate the procedure just described into a Python function:

def modpower(b,e,n):

result = 1

s = b
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q = e

while q > 0:

r = q % 2

if r == 1:

result = result*s % n

# print q, r, s, result

s = s*s % n

q = q/2

return result

With modpower in hand, we can redesign the Fermat test:

ft = lambda n: modpower(2,n-1,n) == 1

Let us analyze the running time of the Fermat test implemented using
modpower. The number of multiplications and divisions required for compu-
tation of modpower(b,e,n) is at most four times the number of binary digits
in e. As noted earlier, the time required to multiply two numbers is bounded
by some constant times the product of the number of binary digits needed to
represent the numbers. Assuming b < n, the running time T for modpower is
therefore

T ∼ C × (binary digits of e)× (binary digits of n)2.

For the Fermat test ft(n), e < n, so

T ∼ C × (binary digits of n)3.

Thus the running time is bounded by a polynomial in the number of bits of
n. Polynomial-time algorithms scale up much better than do exponential-time
algorithms. To illustrate this, consider two algorithms with running times

f(B) = .001B3 g(B) = e−1eB/10

The table below gives running times in seconds, where 3e6 = 3× 106, etc.:

B f g

-------------------

10 1 1

20 8 3

40 64 20

80 512 1097

160 4096 3e6

320 32,768 3e14

Algorithms f and g have the same running time for a 10-bit input. As the
input is doubled to 20 and then 40 bits, algorithm g performs several times
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better than algorithm f . At 80 bits algorithm f runs in 8.5 minutes, about half
the running time of g. But at the next doubling, 160 bits, the outcome is vastly
different. Algorithm f takes about 1.1 hours whereas g takes 5.5 weeks. One
more doubling renders g impractical: it takes a million years as opposed to just
9 hours.

Exercise 16 Consider the 73-digit number

104711095678554724455139239672439382

3977774546307981396782501853835898079

Is it composite? Explain.

Exercise 17 Find an industrial prime larger than 1080.

Exercise 18 A composite number which passes the Fermat test is called a pseu-
doprime (or a 2-pseudoprime). Investigate the number of pseudoprimes among
the industrial primes.

Exercise 19 Devise a function sieve(n) that returns a list of primes p ≤ n.
Use the sieve of Eratosthenes.

7 Problems

Below are more problems to work on.

Exercise 20 Develop a program for listing (printing out) all the positive integer
solutions to the quadratic Diophantine equation x2 + y2 = z2, where x, y, and
z less than some fixed bound C. After doing this, modify your code so that only
primitive triples are printed out. These are triples where x, y, and z have no
common factors.

Exercise 21 Design a function isolve(a,b,c) which returns a solution to the
linear Diophantine equation ax + by = c if it exists.

Exercise 22 Design a function which returns the inverse of a modulo p, a
prime.

Exercise 23 Find a way of manufacturing large (probable) primes. Can you
do better than in ft(n)?
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In the problems below an elliptic curve E modulo p can be represented by a
list [a, b, p], where the curve is given in Weierstrass form by y2 = x3 +ax+ b. A
point on the curve is represented by a list [x, y]. Think about how to represent
the point at infinity.

Exercise 24 Develop a program for counting all the points on an elliptic curve
y2 = x3 + ax + b modulo a prime p.

Exercise 25 Design a function which takes an elliptic curve mod p as input
and produces a point on the curve as output. How does your code perform when
p is very, very large?

Exercise 26 Design a function for adding and doubling points on an elliptic
curve mod p.

Exercise 27 Design a function for generating a random elliptic curve modulo
a random prime with a known rational point.
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