A brief Python tutorial

Mladen Bestvina

May 9, 2007

1 Python as a calculator

To start python, type “python” on the command line. You should get some-

thing like

Python 2.5.1cl (release25-maint, Apr 12 2007, 21:00:25)
[GCC 4.1.2 (Ubuntu 4.1.2-Oubuntu4)] on linux2
Type "help", "copyright", '"credits" or "license" for more information.

>>>

Now you can start using python as a calculator. Here is a sample session.

>>> 2+3

5

>>> T*6

42

>>> 8/3

2

>>> 8.0/3.0
2.6666666666666665
>>> 7h3

1

>>> divmod(7,3)
2, 1

>>> range(3,7)
(3, 4, 5, 6]
>>> 2%%10

1024

>>> 2%%x100
1267650600228229401496703205376L

To exit the python mode type Ctrl-D. Note the difference between 8/3
and 8.0/3.0. Also observe that 7%3 means 7 mod 3 and that divmod returns
both the quotient and the remainder. The function range returns all integers
in the given interval (note that the first number is included but the last one is
not). Exponentiation is denoted #* and arbitrarily long integers are allowed
(when they are longer than usual, this is indicated by the letter L).

To use built-in mathematical functions you have to import them.

>>> from math import sqrt,log
>>> sqrt(2)
1.4142135623730951

>>> log(2)
0.69314718055994529

2 Python programs

It is often more convenient to put python commands in a file which is then
imported (or executed). The following program lists all integers from 1 to
10.

for n in range(1,11):
print n

When you type it in a file, do pay attention to indentations. They are an
important part of the syntax. Say the file is called listing.py. To execute it,
run “python listing.py” from the command line in the same directory. Here
you also see an example of a “for loop”. Note the colon and the indentation.

The following program lists all even numbers in the interval 1,2, --- | 10.

for n in range(1,11):

In addition to the for loop, also note the “if” clause, along with the colon

2

and the indentation. Observe the use of “==".
Save the following in a file called “GCD.py”

def gcd(a,b):
if a<b:
a,b=b,a
if b==0:
return a
r=a%b
return gcd(b,r)

Here we are defining a function ged of two variables. Note how one swaps
the values of a and b. The keyword “return” in effect defines the value of the
function and exits the definition. To use this import the function.

>>> from GCD import gcd
>>> gcd(18,30)
6

3 Basic syntax

3.1 if clause

If you save the following code into a file and run it, what is the output?

x=6

y=8

if x>y:
print

else:
print ‘‘x is not greater than y’’

‘‘x is greater than y’’

3.2 for loop

Same question for

x=4

for i in range(1,x):
print i

x=8

for i in range(1,x):
print i

3.3 while

Same for

x=3

while x<7:
x=x+1
print x

3.4 Lists

Lists are most common data structures in python. They correspond to arrays
in C and other languages.

>>> A=[2, 4, 6]

>>> B=range(1,7)

>>> B

[1, 2, 3, 4, 5, 6]

>>> A+B

(2, 4, 6, 1, 2, 3, 4, 5, 6]
>>> for i in range(3):

print A[i]
2
4
6
>>> A.append(8)
>>> A
[2, 4, 6, 8]
>>> A[-1]
8
>>> len(A)
4

>>> A+B[2:4]

(2, 4, 6, 8, 3, 4]
>>> (A+B) [2:4]

(6, 8]

You can see that a list can be defined by listing elements enclosed in
brackets. The function range returns a list of integers in a specified inter-
val. Lists can be concatenated using A + B, elements can be added, as in
A.append, and individual elements can be retrieved (e.g. A[0]). Note that
the first element is A[0], second is A[1] etc. The last one can be called with
A[—1]. A sublist can be extracted with A[i : j]. The length of a list can be
found using len.

3.5 List comprehension

What does the following code produce?

A=[1,2,4,8,9,10]
print [2*x for x in A]
print [2*x for x in A if x%2==0]

List comprehension is very useful. For example, the following one liner
lists all primes between 2 and 1000.

[p for p in range(2,1000) if O not in [pld for d in range(2,p)]]

Exercise. Write a function primes(n) that lists all primes between 2
and n. Try to make the code run faster than in the above example (but it
will no longer be a one liner!). For example, to test if p is prime you don’t
need to divide by all numbers between 2 and p — 1; it suffices to go to \/p
(of course, you will have to import the square root function). Another speed
improvement is to test divisibility by 2 and 3, and then by numbers congruent
to 1 or 5 mod 6.

4 The sieve of Eratosthenes

There is another, much more efficient algorithm to list all primes from 2 to
n. List all numbers
2,3,---.n

The first number, 2, is prime. Underline it. Then cross all multiples of 2,
namely 4,6,8,---. The first uncrossed and ununderlined number is 3 and it
is prime. Underline it and cross out all multiples of 3, namely 6,9,12, -

(some of these numbers are already crossed out). The first uncrossed and
ununderlined number is 5. Underline it and cross out all multiples of 5,
namely 10, 15,---. Continue in this fashion. The underlined numbers form
the desired list of primes between 2 and n. Sketched below is how this works
when n = 9, where we also put an arrow above the number whose multiples
are being crossed out.

DO«
w

SN
ot

¢ 7 ¢ 9

N
(8 [Co—
W W
|t ot
= =
-3 -3
sa sa
- -

2

~1e

2

o

£ 561789

Here is python code that lists primes < 10000.

ot

def eratosthenes(n):
d=range(n+1)
for i in range(2,n+1):
d[i]=1
arrow=2
while arrow<n:
for k in range(2,n/arrow+1):
d[k*arrow] =0
arrow=arrow+1
while arrow<n and d[arrow]==0:
arrow=arrow+1
for i in range(2,n):
if d[i]l==1:
print i,

eratosthenes (10000)
On my laptop eratosthenes takes 0.1 seconds to list primes < 10000. For

the same task, primes takes 15.3 seconds, while an improved version that
goes to /p takes 0.31 seconds. There is also an improvement of eratosthenes,

where one uses a data structure called dictionary instead of a list, that saves
about 30% of time. Just replace the line

d=range (n+1)
by the line

d={}

