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5. The Chinese Remainder Theorem.

Notation. Let Rn be the set of remainders mod n.

We can write:
Rn = {0, 1, 2, 3, . . . , n− 1}

and think of it as points on the number line:

* * * * · · · * *
0 1 2 3 · · · n− 2 n− 1

We can think of “modn” as a remainder function from Z to Rn:

modn(0) = 0,modn(1) = 1, · · · ,modn(n− 1) = n− 1

modn(n) = 0,modn(n+ 1) = 1, · · ·
that wraps around as integers are increased by multiples of n.

Next, consider the Cartesian product of two of these sets:

Rm ×Rn = {(k, l) | 0 ≤ k < m, 0 ≤ l < n}
which is a set of ordered pairs, or, visually, a rectangle of points:

n− 1 * * * * · · · * *
n− 2 * * * * · · · * *

...
...

...
...

... · · · ...
...

3 * * * * · · · * *
2 * * * * · · · * *
1 * * * * · · · * *
0 * * * * · · · * *

0 1 2 3 · · · m− 2 m− 1

Definition 5.1. The remainders mod m and n function:

modm,n : Rmn → Rm ×Rn

takes a single remainder (r mod mn) to the ordered pair of remainders
(r mod m, r mod n). It is well-defined because m and n divide mn.

Examples: The two sets Rmn and Rm × Rn have the same number of
elements, namely, mn, so there is a chance that taking remainders mod
m and n might be a bijection of the two sets:

(a) The remainders function mod2,3 is a bijection.

mod2,3(0) = (0, 0), mod2,3(1) = (1, 1), mod2,3(2) = (0, 2),
mod2,3(3) = (1, 0), mod2,3(4) = (0, 1), mod2,3(5) = (1, 2)
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(b) The remainders function mod2,2 is not a bijection.

mod2,2(0) = (0, 0),mod2,2(1) = (1, 1),
mod2,2(2) = (0, 0),mod2,2(3) = (1, 1)

We can visualize the remainders function by wrapping the numbers
from 0 to mn− 1 around the m× n rectangle. The function will be a
bijection if they wrap without overlapping:

Visual Examples:

(c) Remainders mod3,4 “wrap without overlap”:

3 7 11
6 10 2
9 1 5
0 4 8

(d) Remainders mod 2,4 “overlap when they wrap”:

∗ 3, 7
2, 6 ∗
∗ 1, 5

0, 4 ∗

Chinese Remainder Theorem:
When GCD(m,n) = 1, modm,n is a bijection.

Proof: The best way to prove that a function is a bijection is to
find the inverse function. We can do this using the equation:

am+ bn = 1 when m and n are relatively prime

for integers a and b (that we can compute using Euclid’s algorithm!).
So suppose (s, t) is a pair of remainders mod m and mod n. Then:

amt+ bns mod mn

will give us what we want, namely, a remainder r mod mn with the
property that modm,n(r) = (s, t). That’s because:

bns = s− ams and amt = t− bnt
by the equation above, so:

(Mod m) r ≡ amt+ bns ≡ bns ≡ s− bms ≡ s

and

(Mod n) r ≡ amt+ bns ≡ amt ≡ t− bnt ≡ t
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Corollary 1: From the previous section,

φ(mn) = φ(m)φ(n)

whenever m and n are relatively prime.

Proof: A remainder mod mn is relatively prime to mn if it has no
prime factors in common with mn. But this is the case if and only if it
has no prime factors in common with m and with n. So the bijection of
the Chinese Remainder Theorem must take relatively prime remainders
to pairs of relatively prime remainders. Thus these sets must also be
in bijection, so they have the same numbers of elements. �

The next Corollary is really useful in practice.

Corollary 2: Arithmetic mod mn can be done mod m and mod n
by first taking remainders, then doing the arithmetic, then using the
inverse function of the Chinese Remainder Theorem.

Example. Calculate 17 · 23 mod 35 = 5 · 7.

First use Euclid’s algorithm:

7 = 1 · 5 + 2
5 = 2 · 2 + 1

and the matrices/vectors:(
0
1

)
,

(
1
0

)
,

(
−1

1

)
,

(
3
−2

)
to get:

3 · 5 + (−2) · 7 = 1, so a = 3 and b = −2

Now take remainders and multiply:

17 ≡ 2 mod 5 and 23 ≡ 3 mod 5, so 17 · 23 ≡ 2 · 3 ≡ 1 mod 5

17 ≡ 3 mod 7 and 23 ≡ 2 mod 7, so 17 · 23 ≡ 3 · 2 ≡ 6 mod 7

That is, we get (2, 3) · (3, 2) ≡ (1, 6) mod (m,n). Next, follow the
prescription of the Chinese Remainder Theorem to take:

amt+ bns = (3)(5)(6) + (−2)(7)(1) = 90− 14 = 76 ≡ 6 mod 35

The answer is 6. We can check this:

17 · 23 = 391 ≡ 41 ≡ 6 mod 35

Check!

Example. This one appeared in this year’s IB mathematics exam.

Problem: Prove that the ones digit of any natural number n is always
equal to the ones digit of n5.
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Proof: The ones digit of n is its remainder mod 10. It suffices to
check this problem with mod 10 arithmetic. Here’s the long answer:

05 = 0 ≡ 0 mod 10, 15 = 1 ≡ 1 mod 10
25 = 32 ≡ 2 mod 10, 35 = 243 ≡ 3 mod 10
45 = 1024 ≡ 4 mod 10, 55 = 3125 ≡ 5 mod 10
65 = (−4)5 ≡ (−1)5(45) ≡ (−1)(4) ≡ 6 mod 10
etc. (the minus sign trick eliminates a lot of arithmetic!)

Or, you can reason as follows. By the Chinese Remainder Theorem,
arithmetic mod 10 is the same as arithmetic of pairs (s, t) mod (2, 5),
so it suffices to show that each:

s5 ≡ s mod 2 and t5 ≡ t mod 5

05 = 0 and 15 = 1 takes care of mod 2 and
05 = 0, 15 = 1, 25 = 32 ≡ 2, 35 ≡ (−2)5 ≡ 3, 45 ≡ (−1)5 ≡ 4

takes care of mod 5, so 25 = 32 was the only calculation we needed!

Higher Dimensional Version of the CRT:
Suppose n = m1m2m3 · · ·mk such that each GCD(mi,mj) = 1.

Then there is an inverse function to the multi-dimensional remainder:

modm1,m2,...,mk
: Rn → Rm1 × · · ·Rmk

given as follows. Since each mi is relatively prime to the product of
all the other m’s, namely n/mi, Euclid’s algorithm gives integers ai, bi
such that:

a1m1 + b1(n/m1) = 1, a2m2 + b2(n/m2) = 1, etc

The inverse of modm1,m2,··· .mk
is given by sending a multi-dimensional

remainder (s1, s2, · · · , sk) to:

b1(n/m1)s1 + b2(n/m2)s2 + · · ·+ bk(n/mk)sk modn

This version is extensively used in computer science!

Example: (Stupid Party Trick) Ask a friend to choose a number be-
tween 0 and 100 (actually, 104 will do). Now ask her to give you the
remainders when her number is divided by 3, 5 and 7. You quickly
scribble something down and come up with her number(!)

Here’s what you scribble. In advance, you’ve calculated:

b1 = −1, b2 = 1, b3 = 1

so when you’re given the three remainders (s1, s2, s3), all you do is find:

−35s1 + 21s2 + 15s3 mod 105

For example, if she says (2, 3, 4), you scribble out −70 + 63 + 60 = 53
and impress her and the rest of your friends!


