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4. Greatest Common Divisors.

Definition 4.1. The greatest common divisor (GCD) of m and n is
the largest natural number d such that d|m and d|n.

Definition 4.2. m and n are relatively prime if their GCD is 1.

Observation. A prime p is relatively prime to every m < p.

Notation: GCD(m,n) will stand for the greatest common divisor.

Question 4.1. Can we determine GCD(m,n) quickly?

In contrast with Refined Question 1.4(b), the answer here is “Yes!”

Euclid’s Algorithm: Given natural numbers m and n, with m ≤ n
(otherwise switch them). Find the remainder when n is divided by m:

n = qm + r

If r = 0, STOP and ouput the number m.
Otherwise, replace n := m and m := r and REPEAT.
(Since each m is smaller than the previous, this will always stop.)

Example: Apply Euclid’s algorithm to m = 1001 and n = 3535.

3535 = 3(1001) + 532
1001 = 1(532) + 469
532 = 1(469) + 63
469 = 7(63) + 28
63 = 2(28) + 7
28 = 4(7) + 0

STOP. The output is 7.

Assertion 1. The output divides both m and n.

Proof: There are many m’s and n’s in Euclid’s algorithm, since the
assignment of m and n is adjusted each time the algorithm is repeated.
The output of Euclid’s algorithm divides all of them. That’s because it
divides the last m (which is itself!) and the last n (since the remainder
was zero). And if it divides m and n at one step, then it divided r and
m at the previous step. So must have divided n, since

n = qm+ r

at that step, too. Now work your way all the way up. �

1



2

Example: In the example above, 7 divides 7 and 28 (last step), so:

7 divides 63, 7 divides 469, 7 divides 532, etc.

Definition 4.2. An integer d is a linear combination of m and n if
there are integers a and b (usually one of them is negative) such that:

am+ bn = d

(Notice that this is the same thing as saying that am ≡ d mod n).

Assertion 2. The output is a linear combination of m and n.

Proof: The output of Euclid’s algorithm is the remainder in the
next-to-the last step. As in the previous assertion, it is easier to see
that every n′,m′ and r′ appearing in every step of Euclid’s algorithm
is a linear combination of m and n. This is true at the first step, since:

(0)m+ (1)n = n, (1)m+ (0)n = m and (−q)m+ (1)n = r

Suppose it is true at one step. That is, suppose:

a1m+ b1n = n′, a2m+ b2n = m′, and a3m+ b3n = r′

(we need “primes” on m,n, r to distinguish them from the originals)
Then the n′′,m′′ and r′′ of the next step are given by:

n′′ := m′,m′′ := r′ and r′′ = n′′ + (−q′′)m′′

so n′′ and m′′ are linear combinations of m,n from the previous step.
What about r′′? Well, this is exactly the situation that matrices are
designed for. If we represent the linear combinations giving m′′ and n′′

as the columns of a 2× 2 matrix and multiply, we get:(
a2 a3

b2 b3

) (
1
−q′′

)
=

(
a2 + a3(−q′′)
b2 + b3(−q′′)

)
which is the column vector for the desired set of coefficients:

(a2 + a3(−q′′))m+ (b2 + b3(−q′′))n = r′

Thus we can keep going. �

Example: In the example above, the column vectors are (in order):(
0
1

)
,

(
1
0

)
,

(
−3

1

)
,

(
4
−1

)
,

(
−7

2

)
,

(
53
−15

)
,

(
−113

32

)
and so, finally, (−113)(1001) + (32)(3535) = 7.

Notice how easy this is to implement in practice!

These simple assertions are remarkably important. Here are the first
few corollaries that we can draw from them:
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Corollary 1: Every common divisor of m and n divides the output.
In particular, the output of Euclid’s algorithm is the GCD, and every
common divisor of m and n also divides their GCD.

Proof: If d divides m and n, then d divides any linear combination
of m and n. Since the output is a linear combination, it follows that
all common divisors divide the output. And of course all divisors are
smaller than the number they divide, so the output is the GCD. �

Corollary 2: If GCD(m,n) = 1, then m has a reciprocal mod n. If p
is prime then each number not divisible by p has a reciprocal mod p.

Proof: If GCD(m,n) = 1, then Assertion 2 gives:

am+ bn = 1 for some integers a, b

which is exactly what we require for reciprocals. And primes are rela-
tively prime to every number that they don’t divide. �

Corollary 3: Suppose p is a prime and p|(mn). Then p|m or p|n.

Proof: Suppose p doesn’t divide m. Then GCD(p,m) = 1, so:

ap+ bm = 1 for some integers a and b

Now multiply this entire equation by n. This gives:

(an)p+ b(mn) = n

so that n is a linear combination of p and mn. Since p divides both
of these (by assumption), it must divide n as well! In other words, p
must divide one or the other (or both) of m and n. �

Corollary 4 (Fundamental Theorem of Arithmetic (Part II)):
In Part I, we saw that every natural number n is a product of primes.
This part shows that there is only one way to do this.

Proof: Suppose n = p1p2 · · · pk is one way to write n as a product of
primes, and q is another prime that divides n. Then q|p1(p2 · · · pk), so
by Corollary 4.5, q|p1 or q|p2 · · · pk. If q|p1, then q = p1 because they
are both primes. But if p divides the product of the others, then the
same argument shows that p must be one of the others. Thus q is one
of the pi. It follows that if n = q1q2 · · · ql is another way to write n as
a product of primes, then k = l and the p’s and q’s are the same. �

Remark: Factoring large numbers is hard (even for a computer)! Thus,
for example, we could have factored:

1001 = 3 · 7 · 11 and 3535 = 5 · 7 · 101

and concluded that 7 was the GCD, this is actually a lot harder to do
than implementing Euclid’s algorithm! If you don’t believe me, choose
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two very large numbers (say, 40 digits) at random. It is easy to get a
computer to run Euclid’s algorithm, but factoring them takes forever.

Definition 4.3: The Euler phi function is defined by:

φ(n) = # {numbers from 1 to n− 1 that are relatively prime to n}

Examples:

φ(p) = p− 1 if p is a prime (everything is relatively prime to p).

φ(4) = 2 (only 1 and 3 are relatively prime to 4).

φ(6) = 2 (only 1 and 5 are relatively prime to 6).

φ(8) = 4 (1, 3, 5 and 7 are relatively prime to 8).

φ(9) = 6 (1, 2, 4, 5, 7, 8 are relatively prime to 9).

φ(10) = 4 (only 1, 3, 7 and 9 are relatively prime to 10).

Two important features of the phi function make it easy to calculate:

Prime Powers: Suppose pk is a prime power. Then the numbers from
1 to pk−1 that are relatively prime to pk are exactly the numbers that
are not divisible by p. These are p− 1 out of every p numbers:

1, 2, · · · , p− 1 from the first p numbers,

p+ 1, p+ 2, · · · , 2p− 1 from the next p numbers,

2p+ 1, 2p+ 2, · · · 3p− 1 from the next, all the way up to pk. So:

φ(pk) =

(
p− 1

p

)
pk = pk − pk−1

That was easy. The next feature is much more surprising:

Relatively Prime Products: Suppose m and n are relatively prime.
Then:

φ(mn) = φ(m)φ(n)

(and this is definitely NOT true if m and n are not relatively prime!)

We will see why this is true later. But first notice that these features
allow us to calculate the phi function of n provided we can factor n
(but unlike Euclid’s algorithm for GCD’s, there is no shortcut here!).

Examples:

91 = 7 · 13 so φ(91) = φ(7) · φ(13) = 6 · 12 = 72.

162 = 2 · 34 so φ(162) = φ(2) · φ(34) = 1 · (34 − 33) = 54.

144 = 24 · 32 so φ(144) = φ(24) · φ(32) = (24 − 23)(32 − 3) = 48.


