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2. Modular Arithmetic and Algebra.

Notation: The expression “k|n” means “k divides n.”

Now fix a natural number k > 1.

Definition 2.1. Integers a and b are congruent modulo k if k|(a− b).

Examples:

Odd numbers are congruent to other odd numbers modulo 2.

Evens are congruent to evens (but not odds) modulo 2.

Every natural number (or integer) a is congruent to its remainder:

If a = qk + r, then a is congruent to r modulo k

where r is, by definition, a whole number between 0 and k − 1.

Notation:

We usually shorten “modulo” to “mod.”

We write “a ≡ b mod k” to mean “a is congruent to b mod k.”

Congruence mod k is an equivalence relation. That is:

(i) It is reflexive: a ≡ a mod k.

(ii) It is symmetric: if a ≡ b, then b ≡ a mod k

(iii) It is transitive: if a ≡ b and b ≡ c, then a ≡ c mod k

(The first two are easy, the third uses (a− b) + (b− c) = (a− c)).

There are k equivalence classes of integers mod k. Namely:

[0] = All the integers congruent to 0 mod k
[1] = All the integers congruent to 1 mod k
...

[d-1] = All the integers congruent to d− 1 mod k.

For example, the two equivalence classes of integers mod 2 are:

[0] = The even integers

[1] = The odd integers

Mod k arithmetic is ordinary arithmetic applied to the k equivalence
classes of integers mod k. It can be computed by adding or multiplying
“remainders” (between 0 and k − 1) and then taking the remainder.
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Example: 2 + 3 = 5 for natural numbers, but mod k this looks like:

2 + 3 ≡ 0 + 1 ≡ 1 mod 2

2 + 3 ≡ 2 + 0 ≡ 2 mod 3

2 + 3 ≡ 5 ≡ 1 mod 4

2 + 3 ≡ 5 ≡ 0 mod 5

2 + 3 ≡ 5 mod 6 or more.

Example: 2 · 3 = 6, but mod k this looks like:

2 · 3 ≡ 0 · 1 ≡ 0 mod 2

2 · 3 ≡ 2 · 0 ≡ 0 mod 3

2 · 3 ≡ 6 ≡ 2 mod 4

2 · 3 ≡ 6 ≡ 1 mod 5

2 · 3 ≡ 6 ≡ 0 mod 6

2 · 3 ≡ 6 mod 7 or more.

Math Interlude: To be sure that the arithmetic is “well-defined:”

[a] + [b] := [a + b], [a] · [b] := [ab]

one needs to check that substitutions do not change the results mod k.
That is, one needs to check that if a ≡ a′ and b ≡ b′ mod k, then:

a + b ≡ a′ + b′ and ab ≡ a′b′ mod k

This is true because:

(a+b)− (a′+b′) = (a−a′)+(b−b′) and ab−a′b′ = (a−a′)b+a′(b−b′)

The first few addition and multiplication tables:

Mod 2

+ 0 1
0 0 1
1 1 0

* 0 1
0 0 0
1 0 1

Mod 3
+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

* 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1
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Mod 4
+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

* 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Mod 5

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

* 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

More mod k arithmetic: The additive inverse of an integer n is −n.
This is of course also true mod k, but if we want to express the additive
inverse in terms of remainders, we get:

k − r is the additive inverse of r because r + (k − r) ≡ 0 mod k

This means we can subtract by adding:

r − s ≡ r + (k − s) mod k

Much more interestingly, there can also be reciprocals (multiplicative
inverses) mod k. Whenever s and t are integers that satisfy:

st− 1 = nk for some n, then st ≡ 1 mod k

and we’ll sloppily write t ≡ 1/s mod k. Then we can divide by s:

r/s ≡ r · t mod k

Examples: 0 never has a reciprocal, and 1 is always its own reciprocal.

(Mod 3) 1/2 ≡ 2 because 2 · 2− 1 = 3.

(Mod 4) 2 has no reciprocal, 1/3 ≡ 3 because 3 · 3− 1 = 2 · 4.

(Mod 5) 1/2 ≡ 3, 1/3 ≡ 2, 1/4 ≡ 4.

Mod k algebra looks just like ordinary algebra except:

(i) The arithmetic is mod k arithmetic.

(ii) The equality is mod k congruence.

(iii) The variables stand for equivalence classes [0], [1], . . . , [k − 1].
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Observation: Unlike ordinary algebra of integers (or rational numbers),
you can solve algebraic equations mod k by trying everything.

Example: Solve x2 ≡ −1 mod k for small values of k:

(Mod 2) −1 ≡ 1, and 12 ≡ 1. One solution.

(Mod 3) −1 ≡ 2 and 12 ≡ 1, 22 ≡ 1. No solutions.

(Mod 4) −1 ≡ 3 and 12 ≡ 1, 22 ≡ 0, 32 ≡ 1. No solutions.

(Mod 5) −1 ≡ 4 and 12 ≡ 1, 22 ≡ 4, 32 ≡ 4, 42 ≡ 1. Two solutions!

Linear Equations: These are equations of the form

ax ≡ b mod k

Case 1. If a has a reciprocal mod k, then x ≡ b/a is the only solution.

Case 2. If a has no reciprocal mod k, there may be no solutions or one
solution or more than one solution! For example:

2x ≡ 3 mod 4 has no solutions, but

2x ≡ 2 mod 4 has two solutions (x = 1 and x = 3).

We generally like Case 1 (where things are certain) more than Case 2!

Roots of Polynomials: Suppose we are given a “mod k” polynomial:

p(x) = xd + c1x
d−1 + · · · cd

and a root r of the polynomial (mod k) (so that p(r) ≡ 0 mod k).
Then as in ordinary algebra, x− r “goes into” p(x) mod k. That is:

p(x) ≡ q(x)(x− r) mod k for some polynomial q(x)

and if we keep finding roots r = r1, . . . , rd we can keep factoring:

p(x) ≡ (x− r1)(x− r2) · · · (x− rd) mod k

In ordinary algebra, there are no other roots of p(x). That may not
be the case here. Suppose s is different from r1, r2, . . . , rd. Then:

p(s) ≡ (s− r1)(s− r2) · · · (s− rd) mod k

Each s − ri 6≡ 0 mod k, but we can only conclude p(s) 6≡ 0 mod k if
we know that products of non-zero numbers are non-zero mod k.

This is not true if k is composite! If k = ab, then ab ≡ 0 mod k.

This is true if k is prime. When k is prime, we will also see (in §4)
that as is the case with the rational numbers and real numbers, every
number (mod k) except for 0 will have a mod k reciprocal.
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Nasty and Nice Examples:

(a) Consider the polynomial x2 − 1 mod 8. This factors:

p(x) = (x− 1)(x + 1) ≡ (x− 1)(x− 7) mod 8

BUT there are two other roots, namely x ≡ 3 and x ≡ 5 because:

2 · 4 ≡ 0 and 4 · 6 ≡ 0 mod 8

This is something we don’t usually want our polynomials to do!

(b) Consider next the polynomial x4−1 modulo the first few primes,
where the algebra of taking roots behaves better.

(Mod 2) this has one root and it factors:

x4 − 1 ≡ (x− 1)4 mod 2

(Mod 3) this has two roots: 1 and 2 ≡ −1, and it factors:

x4 − 1 ≡ (x2 + 1)(x− 1)(x + 1) ≡ (x2 + 1)(x− 1)(x− 2) mod 3

with a polynomial left over (x2 + 1) that has no roots.

(Mod 5) this has four roots: 1, 2, 3, 4, and it factors:

x4 − 1 ≡ (x− 1)(x− 2)(x− 3)(x− 4) mod 5

Completing the Square Mod p: Suppose we are given:

ax2 + bx + c ≡ 0 with a 6≡ 0 mod k

where k = p is an odd prime (i.e. a prime other than 2). Then

(i) Subtract c from both sides:

ax2 + bx ≡ −c mod k

(ii) Multiply both sides by 4a (which has a reciprocal):

4a2x2 + 4abx ≡ −4ac mod k

(iii) Add b2 to both sides:

4a2x2 + 4abx + b2 ≡ b2 − 4ac mod k

(iv) Factor the left side as a perfect square:

(2ax + b)2 ≡ b2 − 4ac mod k

Conclusion: As with ordinary quadratics there are three cases:

Case 1: b2 − 4ac ≡ 0 mod k. Then there is one root.

Case 2: b2 − 4ac ≡ d2 mod k for some d. Then there are two roots:

x ≡ (−b + d)/2a and x ≡ (−b− d)/2a mod k

Case 3: b2 − 4ac is not a square mod k. Then there are no roots.
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Question 2.1. What numbers mod p have square roots when p is prime?

Notice: Every square except 0 (mod p) has two square roots (mod p),
so it follows that half the numbers from 1 to p− 1 (mod p) are squares
and the other half are not.

Examples:

(Mod 3) 1 is a square and 2 is not.

(Mod 5) 1 and 4 are squares. 2 and 3 are not.

(Mod 7) 1, 4 and 2 are squares. 3, 5 and 6 are not.

(Mod 11) 1, 4, 9, 5 and 3 are squares. 2, 6, 7, 8 and 10 are not.

(Mod 13) 1, 4, 9, 3, 12 and 10 are squares.

Example: How many mod p roots does x2 + x + 1 have?

b2 − 4ac = 1− 4 ≡ p− 3 mod p

(Mod 3) x2 + x + 1 has one root since b2 − 4ac ≡ 0.

(Mod 5) x2 + x + 1 has no roots, since 2 is not a square.

(Mod 7) x2 + x + 1 has two roots, since 4 is a square.

(Mod 11) x2 + x + 1 has no roots since 8 is not a square.

(Mod 13) x2 + x + 1 has two roots, since 10 is a square.

Finally, something that has no analogue in “ordinary” algebra;

Definition 2.2: a is primitive mod p if the powers:

a, a2, a3, a4, . . . , ap−1 mod p

are all different, hence fill up all the numbers mod p except for 0.

Note: We’ll see later that primitives always exist.

Examples: When is 2 primitive mod p? (Obviously 1 never is!)

(Mod 3) 21 = 2, 22 ≡ 1 so 2 is primitive.

(Mod 5) 21 ≡ 2, 22 ≡ 4, 23 ≡ 3, 24 ≡ 1 so 2 is primitive.

(Mod 7) 21 ≡ 2, 22 ≡ 4, 23 ≡ 1, 24 ≡ 2. Stop. 2 isn’t primitive!

(Mod 11) 2, 4, 8, 5, 10, 9, 7, 3, 6, 1 are the powers, so 2 is primitive!.

Open Problem 4. Is 2 primitive mod p for infinitely many primes?
Is any number primitive mod p for infinitely many primes?

Fun Fact: Once you find a primitive, then you know exactly which
numbers have square roots! They are the even powers of the primitive.
For example, 2 is primitive mod 11 and its even powers are: 4, 5, 9, 3, 1.


