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2. Modular Arithmetic and Algebra.
Notation: The expression “k|n” means “k divides n.”
Now fix a natural number k£ > 1.
Definition 2.1. Integers a and b are congruent modulo k if k|(a — b).
Ezxamples:
Odd numbers are congruent to other odd numbers modulo 2.
Evens are congruent to evens (but not odds) modulo 2.
Every natural number (or integer) a is congruent to its remainder:
If a = gk + r, then a is congruent to r modulo k
where r is, by definition, a whole number between 0 and k — 1.
Notation:
We usually shorten “modulo” to “mod.”

We write “a =b mod k” to mean “a is congruent to b mod £.”

Congruence mod k is an equivalence relation. That is:

(i) It is reflexive: @ = a mod k.

(ii) It is symmetric: if a = b, then b =a mod k

(iii) It is transitive: if @ = b and b = ¢, then a = ¢ mod k

(The first two are easy, the third uses (a —b) + (b — ¢) = (a — ¢)).
There are k equivalence classes of integers mod k. Namely:

[0] = All the integers congruent to 0 mod k
[1] = All the integers congruent to 1 mod k

[d—l] = All the integers congruent to d — 1 mod k.

For example, the two equivalence classes of integers mod 2 are:
[0] = The even integers
[1] = The odd integers

Mod k arithmetic is ordinary arithmetic applied to the k equivalence
classes of integers mod k. It can be computed by adding or multiplying
“remainders” (between 0 and k£ — 1) and then taking the remainder.
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Ezxample: 2 4+ 3 = 5 for natural numbers, but mod k this looks like:
243=0+1=1 mod 2

243=2+0=2 mod 3

24+3=5=1 mod4

24+3=5=0 mod5b

243 =5 mod 6 or more.
Example: 2 -3 = 6, but mod k£ this looks like:

2:3=0-1=0 mod 2

2:3=2-0=0 mod 3

2:3=6=2 mod 4

2:3=6=1 mod5

2:-3=6=0 mod 6
2

-3 =6 mod 7 or more.

Math Interlude: To be sure that the arithmetic is “well-defined:”
[a] 4 [b] :== [a + 0], [a] - [0] := [ab]

one needs to check that substitutions do not change the results mod k.
That is, one needs to check that if @ = a’ and b =V mod k, then:

a+b=d +V and ab=d'b mod k
This is true because:

(a+b0)—(a'+V)=(a—d)+(b—V") and ab—a't' = (a—a')b+d' (b—1)

The first few addition and multiplication tables:

Mod 2
+10]1 011
0011 0[01]0
11110 110
Mod 3
+10]1]2 *1o[1]2
0]0(1]2 001010
1111210 110112
2121011 210121




Mod 4
+101112(3 *lol1]2]3
0(0]1]2|3 0[0]0J010
111121310 11011213
21213101 210121012
313/0[1]2 31013121

Mod 5
+(0]112(3|4 10112134
0(0[|1[2]|3|4 0[{0]010]0]|0O
11112131410 11011121314
2121314101 2101214113
313[4/0(1(2 3101311142
41410(1(2]3 410141321

More mod k arithmetic: The additive inverse of an integer n is —n.
This is of course also true mod k, but if we want to express the additive
inverse in terms of remainders, we get:

k — r is the additive inverse of r because r + (k —7r) =0 mod k
This means we can subtract by adding:
r—s=r+(k—s) modk

Much more interestingly, there can also be reciprocals (multiplicative
inverses) mod k. Whenever s and t are integers that satisfy:

st — 1 = nk for some n, then st =1 mod k
and we’ll sloppily write ¢ = 1/s mod k. Then we can divide by s:
r/s=r-t modk

Ezxamples: 0 never has a reciprocal, and 1 is always its own reciprocal.
(Mod 3) 1/2 = 2 because 2-2 — 1 = 3.
(Mod 4) 2 has no reciprocal, 1/3 = 3 because 3-3 —1=2-4.
(Mod 5) 1/2=3,1/3=2,1/4 = 4.

Mod k algebra looks just like ordinary algebra except:
(i) The arithmetic is mod k arithmetic.
(ii) The equality is mod k congruence.

(iii) The variables stand for equivalence classes [0], [1],..., [k — 1].
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Observation: Unlike ordinary algebra of integers (or rational numbers),
you can solve algebraic equations mod £ by trying everything.
Ezample: Solve 22 = —1 mod k for small values of k:

(Mod 2) —1 =1, and 1?> = 1. One solution.

(Mod 3) —1 =2 and 12 = 1,2% = 1. No solutions.

(Mod 4) —1 =3 and 12 =1,2% =0,3> = 1. No solutions.

(Mod 5) —1 =4 and 12 =1,2%2 = 4,3% = 4,4? = 1. Two solutions!
Linear Equations: These are equations of the form

ar =0 mod k

Case 1. If a has a reciprocal mod k, then = = b/a is the only solution.

Case 2. If a has no reciprocal mod k, there may be no solutions or one
solution or more than one solution! For example:

2r =3 mod 4 has no solutions, but
2x =2 mod 4 has two solutions (z =1 and x = 3).
We generally like Case 1 (where things are certain) more than Case 2!
Roots of Polynomials: Suppose we are given a “mod k” polynomial:
p(z) =2+ izt gy

and a root r of the polynomial (mod k) (so that p(r) = 0 mod k).
Then as in ordinary algebra, x — r “goes into” p(z) mod k. That is:

p(z) = q(z)(x —r) mod k for some polynomial g(x)
and if we keep finding roots r = ry,...,ry we can keep factoring:
px)=(x—r))(zr—ry) - (x—ry) modk
In ordinary algebra, there are no other roots of p(x). That may not
be the case here. Suppose s is different from 71,75, ...,7r4. Then:
p(s)=(s—r)(s—rg)---(s—ry) modk
Each s —r; # 0 mod k, but we can only conclude p(s) # 0 mod k if
we know that products of non-zero numbers are non-zero mod k.

This is not true if k is composite! If k = ab, then ab =0 mod k.

This is true if k is prime. When k is prime, we will also see (in §4)
that as is the case with the rational numbers and real numbers, every
number (mod k) except for 0 will have a mod k reciprocal.



Nasty and Nice Examples:
(a) Consider the polynomial 22 — 1 mod 8. This factors:
pz)=(—-1(x+1)=(@—-1)(r—7) mod38
BUT there are two other roots, namely x = 3 and x = 5 because:
2-4=0and4-6=0 mod 8
This is something we don’t usually want our polynomials to do!

(b) Consider next the polynomial 2* — 1 modulo the first few primes,
where the algebra of taking roots behaves better.

(Mod 2) this has one root and it factors:
' —1=(z—-1)* mod?2
(Mod 3) this has two roots: 1 and 2 = —1, and it factors:
1=+ D@-D)@+) =@+ 1) (r—1)(z—2) mod3
with a polynomial left over (2% + 1) that has no roots.
(Mod 5) this has four roots: 1,2,3,4, and it factors:
7' —1=(x—1)(r—2)(x—3)(z—4) mod5

Completing the Square Mod p: Suppose we are given:
ar’? +br+c=0witha#0 mod k
where k = p is an odd prime (i.e. a prime other than 2). Then
(i) Subtract ¢ from both sides:
ar? +br = —c mod k
(ii) Multiply both sides by 4a (which has a reciprocal):
4a%2? + dabr = —4ac mod k
(iii) Add v? to both sides:
4a’2? + dabr + b* = b* — 4dac mod k
(iv) Factor the left side as a perfect square:
(2ax + b)? = b* — 4ac mod k
Conclusion: As with ordinary quadratics there are three cases:
Case 1: b> —4ac =0 mod k. Then there is one root.
Case 2: b*> — 4ac = d*> mod k for some d. Then there are two roots:
r=(-b+d)/2a and x = (—b—d)/2a mod k

Case 3: b? — 4ac is not a square mod k. Then there are no roots.
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Question 2.1. What numbers mod p have square roots when p is prime?

Notice: Every square except 0 (mod p) has two square roots (mod p),
so it follows that half the numbers from 1 to p — 1 (mod p) are squares
and the other half are not.

Ezxamples:
(Mod 3) 1 is a square and 2 is not.
(Mod 5) 1 and 4 are squares. 2 and 3 are not.
(Mod 7) 1,4 and 2 are squares. 3,5 and 6 are not.
(Mod 11) 1,4,9,5 and 3 are squares. 2,6,7,8 and 10 are not.
(Mod 13) 1,4,9,3,12 and 10 are squares.
Ezample: How many mod p roots does 2% + z + 1 have?
V> —4ac=1—-4=p—3 modp
Mod 3) 22 + x + 1 has one root since b* — 4ac = 0.
Mod 5) 22 + x + 1 has no roots, since 2 is not a square.

(

(

(Mod 7) 2 + x + 1 has two roots, since 4 is a square.
(Mod 11) 22 4+ x 4+ 1 has no roots since 8 is not a square.
(

Mod 13) 22 + x + 1 has two roots, since 10 is a square.

Finally, something that has no analogue in “ordinary” algebra;
Definition 2.2: a is primitive mod p if the powers:

a,a®,a®,a*, ... aP7?

mod p
are all different, hence fill up all the numbers mod p except for 0.
Note: We'll see later that primitives always exist.
Ezamples: When is 2 primitive mod p? (Obviously 1 never is!)
(Mod 3) 2! = 2,22 = 1 so 2 is primitive.
(Mod 5) 2! =2,22 =4,2% = 3,2* =1 50 2 is primitive.
(Mod 7) 2! =2,22=4,23 = 1,2 = 2. Stop. 2 isn’t primitive!
(Mod 11) 2,4,8,5,10,9,7,3,6,1 are the powers, so 2 is primitive!.

Open Problem 4. Is 2 primitive mod p for infinitely many primes?
Is any number primitive mod p for infinitely many primes?

Fun Fact: Once you find a primitive, then you know exactly which
numbers have square roots! They are the even powers of the primitive.
For example, 2 is primitive mod 11 and its even powers are: 4,5,9, 3, 1.



