Summer High School 2009

Aaron Bertram

2. Modular Arithmetic and Algebra.

Notation: The expression "k|n" means "k divides n."

Now fix a natural number k > 1.

Definition 2.1. Integers a and b are congruent modulo k if k|(a-b). Examples:

Odd numbers are congruent to other odd numbers modulo 2.

Evens are congruent to evens (but not odds) modulo 2.

Every natural number (or integer) a is congruent to its remainder:

If a = qk + r, then a is congruent to r modulo k

where r is, by definition, a whole number between 0 and k-1.

Notation:

We usually shorten "modulo" to "mod."

We write " $a \equiv b \mod k$ " to mean "a is congruent to $b \mod k$."

Congruence mod k is an equivalence relation. That is:

- (i) It is reflexive: $a \equiv a \mod k$.
- (ii) It is symmetric: if $a \equiv b$, then $b \equiv a \mod k$
- (iii) It is transitive: if $a \equiv b$ and $b \equiv c$, then $a \equiv c \mod k$

(The first two are easy, the third uses (a - b) + (b - c) = (a - c)).

There are k equivalence classes of integers mod k. Namely:

- [0] = All the integers congruent to 0 mod k
- [1] = All the integers congruent to 1 $\mod k$

:

[d-1] = All the integers congruent to $d-1 \mod k$.

For example, the two equivalence classes of integers mod 2 are:

- [0] = The even integers
- [1] = The odd integers

Mod k arithmetic is ordinary arithmetic applied to the k equivalence classes of integers mod k. It can be computed by adding or multiplying "remainders" (between 0 and k-1) and then taking the remainder.

Example: 2+3=5 for natural numbers, but mod k this looks like:

$$2+3\equiv 0+1\equiv 1 \mod 2$$

$$2+3\equiv 2+0\equiv 2\mod 3$$

$$2+3 \equiv 5 \equiv 1 \mod 4$$

$$2+3\equiv 5\equiv 0\mod 5$$

 $2+3 \equiv 5 \mod 6$ or more.

Example: $2 \cdot 3 = 6$, but mod k this looks like:

$$2\cdot 3\equiv 0\cdot 1\equiv 0 \mod 2$$

$$2 \cdot 3 \equiv 2 \cdot 0 \equiv 0 \mod 3$$

$$2\cdot 3\equiv 6\equiv 2\mod 4$$

$$2 \cdot 3 \equiv 6 \equiv 1 \mod 5$$

$$2 \cdot 3 \equiv 6 \equiv 0 \mod 6$$

 $2 \cdot 3 \equiv 6 \mod 7$ or more.

Math Interlude: To be sure that the arithmetic is "well-defined:"

$$[a] + [b] := [a+b], [a] \cdot [b] := [ab]$$

one needs to check that *substitutions* do not change the results mod k. That is, one needs to check that if $a \equiv a'$ and $b \equiv b' \mod k$, then:

$$a + b \equiv a' + b'$$
 and $ab \equiv a'b' \mod k$

This is true because:

$$(a+b)-(a^\prime+b^\prime)=(a-a^\prime)+(b-b^\prime)$$
 and $ab-a^\prime b^\prime=(a-a^\prime)b+a^\prime(b-b^\prime)$

The first few addition and multiplication tables:

Mod 2

$$\begin{array}{c|cccc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline 1 & 1 & 0 \\ \end{array}$$

Mod 3

+	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

*	0	1	2
0	0	0	0
1	0	1	2
2	0	2	1

Mod 4

+	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

*	0	1	2	3
0	0	0	0	0
1	0	1	2	3
2	0	2	0	2
3	0	3	2	1

Mod 5

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

*	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

More mod k arithmetic: The additive inverse of an integer n is -n. This is of course also true mod k, but if we want to express the additive inverse in terms of remainders, we get:

k-r is the additive inverse of r because $r+(k-r)\equiv 0 \mod k$

This means we can *subtract* by adding:

$$r - s \equiv r + (k - s) \mod k$$

Much more interestingly, there can also be reciprocals (multiplicative inverses) mod k. Whenever s and t are integers that satisfy:

$$st - 1 = nk$$
 for some n, then $st \equiv 1 \mod k$

and we'll sloppily write $t \equiv 1/s \mod k$. Then we can divide by s:

$$r/s \equiv r \cdot t \mod k$$

Examples: 0 never has a reciprocal, and 1 is always its own reciprocal.

(Mod 3)
$$1/2 \equiv 2$$
 because $2 \cdot 2 - 1 = 3$.

(Mod 4) 2 has no reciprocal, $1/3 \equiv 3$ because $3 \cdot 3 - 1 = 2 \cdot 4$.

(Mod 5)
$$1/2 \equiv 3, 1/3 \equiv 2, 1/4 \equiv 4$$
.

 $\bf Mod~k~algebra~looks~just~like~ordinary~algebra~except:$

- (i) The arithmetic is mod k arithmetic.
- (ii) The equality is mod k congruence.
- (iii) The variables stand for equivalence classes $[0], [1], \dots, [k-1]$.

Observation: Unlike ordinary algebra of integers (or rational numbers), you can solve algebraic equations mod k by trying everything.

Example: Solve $x^2 \equiv -1 \mod k$ for small values of k:

 $(\text{Mod } 2) -1 \equiv 1$, and $1^2 \equiv 1$. One solution.

(Mod 3) $-1 \equiv 2$ and $1^2 \equiv 1, 2^2 \equiv 1$. No solutions.

(Mod 4) $-1 \equiv 3$ and $1^2 \equiv 1, 2^2 \equiv 0, 3^2 \equiv 1$. No solutions.

(Mod 5) $-1 \equiv 4$ and $1^2 \equiv 1, 2^2 \equiv 4, 3^2 \equiv 4, 4^2 \equiv 1$. Two solutions!

Linear Equations: These are equations of the form

$$ax \equiv b \mod k$$

Case 1. If a has a reciprocal mod k, then $x \equiv b/a$ is the only solution.

Case 2. If a has no reciprocal mod k, there may be no solutions or one solution or more than one solution! For example:

 $2x \equiv 3 \mod 4$ has no solutions, but

 $2x \equiv 2 \mod 4$ has two solutions (x = 1 and x = 3).

We generally like Case 1 (where things are certain) more than Case 2!

Roots of Polynomials: Suppose we are given a "mod k" polynomial:

$$p(x) = x^d + c_1 x^{d-1} + \dots + c_d$$

and a root r of the polynomial (mod k) (so that $p(r) \equiv 0 \mod k$). Then as in ordinary algebra, x - r "goes into" $p(x) \mod k$. That is:

$$p(x) \equiv q(x)(x-r) \mod k$$
 for some polynomial $q(x)$

and if we keep finding roots $r = r_1, \ldots, r_d$ we can keep factoring:

$$p(x) \equiv (x - r_1)(x - r_2) \cdots (x - r_d) \mod k$$

In ordinary algebra, there are no other roots of p(x). That may not be the case here. Suppose s is different from r_1, r_2, \ldots, r_d . Then:

$$p(s) \equiv (s - r_1)(s - r_2) \cdots (s - r_d) \mod k$$

Each $s - r_i \not\equiv 0 \mod k$, but we can only conclude $p(s) \not\equiv 0 \mod k$ if we know that products of non-zero numbers are non-zero mod k.

This is **not true** if k is composite! If k = ab, then $ab \equiv 0 \mod k$.

This **is true** if k is prime. When k is prime, we will also see (in §4) that as is the case with the rational numbers and real numbers, every number (mod k) except for 0 will have a mod k reciprocal.

Nasty and Nice Examples:

(a) Consider the polynomial $x^2 - 1 \mod 8$. This factors:

$$p(x) = (x-1)(x+1) \equiv (x-1)(x-7) \mod 8$$

BUT there are two other roots, namely $x \equiv 3$ and $x \equiv 5$ because:

$$2 \cdot 4 \equiv 0 \text{ and } 4 \cdot 6 \equiv 0 \mod 8$$

This is something we don't usually want our polynomials to do!

- (b) Consider next the polynomial $x^4 1$ modulo the first few primes, where the algebra of taking roots behaves better.
- (Mod 2) this has one root and it factors:

$$x^4 - 1 \equiv (x - 1)^4 \mod 2$$

(Mod 3) this has two roots: 1 and $2 \equiv -1$, and it factors:

$$x^4 - 1 \equiv (x^2 + 1)(x - 1)(x + 1) \equiv (x^2 + 1)(x - 1)(x - 2) \mod 3$$

with a polynomial left over $(x^2 + 1)$ that has no roots.

(Mod 5) this has four roots: 1, 2, 3, 4, and it factors:

$$x^4 - 1 \equiv (x - 1)(x - 2)(x - 3)(x - 4) \mod 5$$

Completing the Square Mod p: Suppose we are given:

$$ax^2 + bx + c \equiv 0$$
 with $a \not\equiv 0 \mod k$

where k = p is an odd prime (i.e. a prime other than 2). Then

(i) Subtract c from both sides:

$$ax^2 + bx \equiv -c \mod k$$

(ii) Multiply both sides by 4a (which has a reciprocal):

$$4a^2x^2 + 4abx \equiv -4ac \mod k$$

(iii) Add b^2 to both sides:

$$4a^2x^2 + 4abx + b^2 \equiv b^2 - 4ac \mod k$$

(iv) Factor the left side as a perfect square:

$$(2ax+b)^2 \equiv b^2 - 4ac \mod k$$

Conclusion: As with ordinary quadratics there are three cases:

Case 1: $b^2 - 4ac \equiv 0 \mod k$. Then there is one root.

Case 2: $b^2 - 4ac \equiv d^2 \mod k$ for some d. Then there are two roots:

$$x \equiv (-b+d)/2a$$
 and $x \equiv (-b-d)/2a \mod k$

Case 3: $b^2 - 4ac$ is not a square mod k. Then there are no roots.

Question 2.1. What numbers mod p have square roots when p is prime?

Notice: Every square except $0 \pmod{p}$ has **two** square roots \pmod{p} , so it follows that half the numbers from 1 to $p-1 \pmod{p}$ are squares and the other half are not.

Examples:

(Mod 3) 1 is a square and 2 is not.

(Mod 5) 1 and 4 are squares. 2 and 3 are not.

(Mod 7) 1, 4 and 2 are squares. 3, 5 and 6 are not.

(Mod 11) 1, 4, 9, 5 and 3 are squares. 2, 6, 7, 8 and 10 are not.

(Mod 13) 1, 4, 9, 3, 12 and 10 are squares.

Example: How many mod p roots does $x^2 + x + 1$ have?

$$b^2 - 4ac = 1 - 4 \equiv p - 3 \mod p$$

(Mod 3) $x^2 + x + 1$ has one root since $b^2 - 4ac \equiv 0$.

(Mod 5) $x^2 + x + 1$ has no roots, since 2 is not a square.

(Mod 7) $x^2 + x + 1$ has two roots, since 4 is a square.

(Mod 11) $x^2 + x + 1$ has no roots since 8 is not a square.

(Mod 13) $x^2 + x + 1$ has two roots, since 10 is a square.

Finally, something that has no analogue in "ordinary" algebra;

Definition 2.2: a is $primitive \mod p$ if the powers:

$$a, a^2, a^3, a^4, \dots, a^{p-1} \mod p$$

are all different, hence fill up all the numbers mod p except for 0.

Note: We'll see later that primitives always exist.

Examples: When is 2 primitive mod p? (Obviously 1 never is!)

(Mod 3) $2^1 = 2$, $2^2 \equiv 1$ so 2 **is** primitive.

(Mod 5) $2^1 \equiv 2, 2^2 \equiv 4, 2^3 \equiv 3, 2^4 \equiv 1$ so 2 **is** primitive.

(Mod 7) $2^1 \equiv 2, 2^2 \equiv 4, 2^3 \equiv 1, 2^4 \equiv 2$. Stop. 2 **isn't** primitive!

 $(Mod\ 11)\ 2,4,8,5,10,9,7,3,6,1$ are the powers, so 2 **is** primitive!.

Open Problem 4. Is 2 primitive mod p for infinitely many primes? Is any number primitive mod p for infinitely many primes?

Fun Fact: Once you find a primitive, then you know exactly which numbers have square roots! They are the *even* powers of the primitive. For example, 2 is primitive mod 11 and its even powers are: 4, 5, 9, 3, 1.