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1. Prime Numbers. Let’s start with some notation:

N = {1, 2, 3, 4, 5, ...} is the (infinite) set of natural numbers.

Z = {...,−3,−2,−1, 0, 1, 2, 3, ...} is the set of integers.

Q = {rational numbers}
R = {real numbers}

Question 1.1. What’s a rational number?

Question 1.2. What’s a real number?

Well-Ordered Axiom of the Natural Numbers:
Every subset S ⊆ N except for the empty set has a smallest element.

Question 1.3. Why is it called “well-ordered”?

Axioms are mathematical statements that are accepted without proof.
We try to keep these to a minimum! There is one other important one:

Archimedes’ Axiom:
Each real number is less than some natural number.

Examples (of subsets of N):

S = {all natural numbers}.
(Smallest element: 1)

S = {natural numbers that are divisible by 3}.
(Smallest element: 3)

S = {natural numbers that are greater than π}.
(Smallest element: 4)

S = {natural numbers that are greater than their squares}.
(No smallest element, because it is the empty set!)

Definition 1.1.

(a) A natural number n > 1 is prime if its only divisors are 1 and n.

(b) Natural numbers > 1 that are not prime are composite.

(c) 1 has a multiplicative inverse (itself) and so is called a unit.

Examples:

Primes up to 30: 2,3,5,7,11,13,17,19,23,29

Composites up to 30: 4,6,8,9,10,12,14,15,16,18,20,21,22,24,25,26,27,28,30
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Fundamental Theorem of Arithmetic (Part I) Every natural
number other than 1 is a product of finitely many primes.

Proof: Let S be the set of all natural numbers other than 1 that are
not a product of finitely many primes and let c be its smallest element.
Then c = ab for some natural numbers a and b not equal to 1 or n.
In particular, a < c and b < c, so a 6∈ S and b 6∈ S, so a and b are
both products of finitely many primes. If we write a = p1p2 · · · pm and
b = q1q2 · · · qn, then c = ab = p1p2 · · · pm ·q1q2 · · · qn and so c would also
be a product of finitely many primes. That’s not allowed, so there can
be no smallest element of S. So S = ∅ by the well-ordered axiom. Thus
every natural number > 1 is a product of finitely many primes. �

Part II of the Fundamental Theorem of Arithmetic will say that there
is only one way for a natural number > 1 to be a product of primes.
We’ll prove this later.

Question 1.4. How many prime numbers are there?

Euclid’s Theorem: There are infinitely many primes.

Proof: If p1, p2, . . . , pn are primes, then N = p1p2 · · · pn + 1 is not
divisible by any of the primes p1, p2, · · · pn. So it must be divisible by
finitely many new primes, by the fundamental theorem of arithemtic.
In other words, no matter how many primes we start with, there are
always more primes. So there are infinitely many. �

Examples: Starting with p1 = 2, the method of proof gives:

N1 = p1 + 1 = 3, which is prime. Call it p2 = 3.

N2 = p1p2 + 1 = 2 · 3 + 1 = 7 is prime. Call it p3 = 7.

N3 = p1p2p3 + 1 = 43 is prime. Call it p4 = 43.

N4 = p1p2p3p4 + 1 = 1807 = 13 · 139. Call them p5 = 13, p6 = 139.

N5 = p1p2 · · · p6 + 1 = 3263443 is prime. Etcetera!

Refined Question 1.4.

(a) What is the largest known prime?

(b) How do we tell if a number n is prime or not?

(c) How far is it from one prime p to the next (as a function of p)?

(d) How many primes are less than n (as a function of n)?
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Some partial answers (without proof!):

Mersenne primes are the largest known primes. Named after Marin
Mersenne (1588-1648), a French monk, mathematician, philosopher,
and musician, these are primes of the form 2p− 1. If k divides n, then:

(2n − 1) = (2k − 1)(2n−k + 2n−2k + · · ·+ 2k + 1)

so 2n− 1 is never a prime if n is composite. On the other hand, 2p− 1
may or may not be a prime if p is a prime:

M1 = 22−1 = 3,M2 = 23−1 = 7,M3 = 25−1 = 31,M4 = 27−1 = 127

are the first four Mersenne primes, but:

211 − 1 = 2047 = 23 · 89

is not a prime. The largest known prime is the Mersenne prime:

243,112,609 − 1

which has about 13 million digits (discovered to be prime in 2008). The
reason we don’t know any other primes of this order of magnitude is
that it takes too long to check whether other numbers of this size are
prime or not (and it isn’t so easy to do it for Mersenne primes, either).

Open Problem 1. Are there infinitely many Mersenne primes?
(Only 46 Mersenne primes are known in all!)

How to Check Primality: One surefire way to tell whether n is
prime is to try to factor it. In other words, for each k = 2, 3, . . . , n− 1,
simply divide n by k and see if there is a nonzero remainder or not. If
there is a remainder of zero (for some k) then n is composite. If there
is always a nonzero remainder, then n is prime.

Simplifications:

(ii) You only need to check this when k ≤
√
n.

(i) You only need to check this when k = p is itself a prime.

Evidently, this isn’t how large prime numbers are found in practice
(it would take too long!). We will talk about more refined primality
tests later this week.

Sample Question: (Mersenne-like primes in Base 10) We know that:

11 is prime, but 111 = 3 · 37 is composite

Notice that 1111 = 11 · 101, and more generally, whenever 11 . . . 11 has
a composite number of digits, then it is itself a composite number. But
what about when it has a prime number of digits? Is 11, 111 prime?
How about 1, 111, 111? How about 11, 111, 111, 111?
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To answer the last two questions, we need to keep in mind that the
distances between primes jump around “at random,” so there aren’t
going to be nice smooth functions that perfectly pin them down. The
natural logarithm function, however, comes astoundingly close.

Definition 1.2: The natural logarithm (“ln(a)” on your calculator)
measures the area under the graph of the function f(x) = 1/x and
bounded by the lines x = 1 and x = a.

This is an increasing function, and in a Calculus class you prove that
it satisfies the usual properties of log functions:

ln(1) = 0, ln(ab) = ln(a) + ln(b)

Definition 1.3: The number e (approximately 2.71828) is the unique
positive real number with the property that ln(e) = 1.

The Prime Number Theorem: On average, the distance from one
prime number p to the next is approximately ln(p).

This is a very “deep” theorem which we won’t be able to prove here.
If you decided to become a math major, it would be a theorem to aspire
to understanding by the time you graduate from college. Notice that
“on average” is extremely important, since we don’t know much at all
about the minimum and maximum “gaps” between primes!

On the minimum side, you can’t do better than a distance of two
(once you clear 2 and 3) because all primes > 2 are odd numbers:

Definition 1.4: Twin primes are primes that differ by two.

Examples: 3 and 5, 5 and 7, 11 and 13, 17 and 19.

Open Problem 2. Are there infinitely many twin primes?

On the maximum side, little is known. Here are the largest gaps
between small primes (relative to their size).

Gap
3 to 5 2
7 to 11 4
23 to 29 6
89 to 97 8

113 to 127 14

Sample Open Problem 3. If you could prove that the gap is always:

< 2
√
p+ 1

then you would be instantly famous (it is suspected to be much smaller,
and that would be a consequence of the famous Riemann Hypothesis).
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Final Remark: Let

π(n) = the number of primes less than or equal to n

The fact that the average distance from p to the next prime is ln(p)
implies that about 1/ ln(p) of the numbers near p are prime. Thus
we ought to get a good estimate for π(n) by taking the area beneath
1/ ln(x) from x = 1 to x = n (for those of you who know Calculus,
1/ ln(x) can’t be integrated using any of the tricks of the trade).

This new function is called Li(x). It comes very close to π(n).

n π(n) Li(n) (approximately)
10 4 6.1656
100 25 30.126
1000 168 177.61
10,000 1229 1246.1
100,000 9592 9629.8
1,000,000 78,498 78,728

Really Final Remark: Gauss and Riemann first observed how close
Li(n) came to predicting π(n). They conjectured that for all n:

Li(n) > π(n)

They were wrong (even the greats can make mistakes once in a while).
But the first time the two functions switch so that Li(n) < π(n) is
probably around n = 10316 (that’s a 1 followed by 316 zeroes!). It isn’t
known exactly when it happens. We just know that it does happen
(proved by Littlewood in 1914).


