Moduli Spaces, Cortona, August 2015

(Aaron Bertram)
5. Reider's Theorem. We start with an observation of Mumford:

For an ample line bundle L (of first chern class $c_{1}(L)=H$) on a smooth projective (complex) surface S, we may deduce:

$$
\mathrm{H}^{1}\left(S, K_{S}+L\right)=0
$$

from the two inequalities:
Hodge Index. For any divisor class D,

$$
(H \cdot H)(D \cdot D) \leq(H \cdot D)^{2}
$$

Bogomolov Inequality. For any semi-stable bundle E on S,

$$
c_{1}^{2}(E) \geq 2 \operatorname{ch}_{0}(E) \operatorname{ch}_{2}(E)
$$

Proof. By Serre duality, we have:

$$
\mathrm{H}^{1}\left(S, K_{S}+L\right)=\operatorname{Ext}^{1}\left(\mathcal{O}_{S}, K_{S}+L\right)=\operatorname{Ext}^{1}\left(L, \mathcal{O}_{S}\right)^{*}
$$

so the desired vanishing is equivalent to showing that each sequence:

$$
(*) 0 \rightarrow \mathcal{O}_{S} \rightarrow E \rightarrow L \rightarrow 0
$$

splits, i.e. that the extension class ϵ for $(*)$ is zero.
Step 1. The vector bundle E in $(*)$ is unstable by the computation:

$$
\operatorname{ch}_{0}(E)=2, c_{1}(E)=H \text { and } \operatorname{ch}_{2}(E)=\frac{H^{2}}{2}
$$

from which it follows that:

$$
c_{1}^{2}(E)=H^{2}<2 H^{2}=2 \operatorname{ch}_{0}(E) \operatorname{ch}_{2}(E)
$$

violates the Bogomolov inequality. This forces the bundle E to fit into a destabilizing exact sequence:

$$
0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0
$$

with B a rank one torsion-free sheaf and A invertible.
Step 2. Either the induced map $f: A \rightarrow E \rightarrow L$ is an isomorphism, splitting the sequence, or else there is an effective curve $C \subset S$ such that:

$$
A=L(-C), \text { and } B=\mathcal{O}_{S}(C) \otimes \mathcal{I}_{W}
$$

from which we deduce the inequalities:
(a) $1 \leq H \cdot C<H^{2} / 2$ (because C is effective and B destabilizes E).
(b) $\operatorname{ch}_{2}(E)=\operatorname{ch}_{2}(A)+\operatorname{ch}_{2}(B) \leq(H-C)^{2} / 2+C^{2} / 2$, so $H \cdot C \leq C^{2}$.
which we multiply together to get:

$$
(H \cdot C)^{2}<\frac{H^{2} C^{2}}{2}
$$

violating the Hodge inequality.
Reider's idea is to apply the same strategy to:

$$
\mathrm{H}^{1}\left(S, K_{S} \otimes L \otimes \mathcal{I}_{Z}\right)
$$

where $Z \subset S$ has length d, the vanishing of which (for all Z) is the d-very-ample condition for the line bundle $K_{S}+L$.

Once again, we use Serre duality:

$$
\mathrm{H}^{1}\left(S, K_{S} \otimes L \otimes \mathcal{I}_{Z}\right)=\operatorname{Ext}^{1}\left(L \otimes \mathcal{I}_{Z}, \mathcal{O}_{S}\right)^{*}
$$

so we desire to prove that the sequences:

$$
(*) 0 \rightarrow \mathcal{O}_{S} \rightarrow E \rightarrow L \otimes \mathcal{I}_{Z} \rightarrow 0
$$

all split. In fact, by induction (if we assume that all sequences $(*)$ split for all schemes Z^{\prime} of length $d^{\prime}<d$), we may assume that E is a vector bundle. Otherwise, we'd have a similar sequence for $E^{* *}$:

$$
(* *) 0 \rightarrow \mathcal{O}_{S} \rightarrow E^{* *} \rightarrow L \otimes \mathcal{I}_{Z^{\prime}} \rightarrow 0
$$

that would split, inducing a splitting of $(*)$.
Step 1. E is unstable if the Bogomolov inequality is violated:

$$
c_{1}^{2}(E)=H^{2}<2 \operatorname{ch}_{0}(E) \operatorname{ch}_{2}(E)=4\left(\frac{H^{2}}{2}-d\right)
$$

i.e. if:

$$
H^{2}>4 d
$$

so we assume first that this is the case, and:

$$
0 \rightarrow A \rightarrow E \rightarrow B \rightarrow 0
$$

is the destabilizing exact sequence.
Step 2. If the induced $f: A \rightarrow Z \otimes \mathcal{I}_{Z}$ is not an isomorphism, then:

$$
A=L(-C) \text { and } B=\mathcal{O}_{S}(C) \otimes \mathcal{I}_{W}
$$

as before, and $Z \subset C$ is a subscheme of the curve C. In this case:
(a) $1 \leq H \cdot C<H^{2} / 2$ as before, but:
(b) $H \cdot C \leq C^{2}+d$, and:
(c) $H^{2} C^{2} \leq(H \cdot C)^{2}$ by Hodge Index.

Thus, in this case we obtain:

$$
1-d \leq C^{2} \leq d \text { and } H \cdot C \leq C^{2}+d
$$

The nonexistence of such curves plus $H^{2}>4 d$ implies the vanishing.
Examples. $(d=1) K_{S}+L$ is base point free if $H^{2}>4$ and there are no effective curves $C \subset S$ satisfying:

$$
C^{2}=0 \text { and } H \cdot C=1 \text { or } C^{2}=1 \text { and } H \cdot C=2
$$

In particular, if $L=n A$ and $n \geq 3$, then $K_{S}+L$ is base point free.
$(d=2) K_{S}+L$ is very ample if $H^{2}>8$ and there are no effective curves $C \subset S$ satisfying:

$$
C^{2}=-1, H \cdot C=1 \text { or } \ldots \text { or } C^{2}=2, H \cdot C=4
$$

but the last case is out, because it (together with $H^{2}>8$) violates (c). Thus, in particular, if $L=n A$ and $n \geq 4$, then $K+L$ is very ample, which is optimal (as is (a)), considering the example of $\left(\mathbb{P}^{2}, \mathcal{O}_{\mathbb{P}^{2}}(1)\right)$.

A related computation is relevant to stability conditions on S.
Let $\alpha=\alpha_{0}+\alpha_{1}+\alpha_{2} \in \mathrm{H}^{0}(S, \mathbb{Q}) \oplus \mathrm{NS}(S)_{\mathbb{Q}} \oplus \mathrm{H}^{4}(S, \mathbb{Q})$ satisfy:

$$
(\dagger) \quad \alpha_{0}>0 \text { and } \alpha_{1}^{2}>2 \alpha_{0} \alpha_{2}
$$

(the strict Bogomolov inequality) and let $H \in \mathrm{NS}(S)$ be an ample class.
Then:

$$
\operatorname{deg}(\operatorname{ch}(E) \cdot \alpha \cdot H)=0 \Rightarrow \operatorname{deg}(\operatorname{ch}(E) \cdot \alpha)<0
$$

for all (Mumford) semi-stable torsion-free sheaves on S.
Proof: The former equality gives:

$$
\begin{gathered}
\alpha_{0} c_{1}(E) \cdot H+\operatorname{ch}_{0}(E) \alpha_{1} \cdot H=0 \text { and } \\
H \cdot\left(\alpha_{0} c_{1}(E)+\operatorname{ch}_{0}(E) \alpha_{1}\right)=0
\end{gathered}
$$

so we may conclude from the Hodge index theorem that:

$$
\left(\alpha_{0} c_{1}(E)+\operatorname{ch}_{0}(E) \alpha_{1}\right)^{2} \leq 0
$$

On the other hand, the second expression is:

$$
\begin{gathered}
\alpha_{0}(E) \operatorname{ch}_{2}(E)+\alpha_{1} \cdot c_{1}(E)+\operatorname{ch}_{0}(E) \alpha_{2}< \\
\alpha_{0}\left(\frac{c_{1}^{2}(E)}{2 \operatorname{ch}_{0}(E)}\right)+\alpha_{1} \cdot c_{1}(E)+\operatorname{ch}_{0}(E)\left(\frac{\alpha_{1}^{2}}{2 \alpha_{0}}\right)= \\
\frac{1}{2 \alpha_{0} \operatorname{ch}_{0}(E)}\left(\alpha_{0} c_{1}(E)+\operatorname{ch}_{0}(E) \alpha_{1}\right)^{2} \leq 0
\end{gathered}
$$

giving the desired inequality.
This is enough to show that the pair (Z, \mathcal{A}) consisting of:
(i) The "central charge"

$$
Z(E)=(-\operatorname{deg}(\operatorname{ch}(E) \cdot \alpha)+\sqrt{-1} \operatorname{deg}(\operatorname{ch}(E) \cdot \alpha \cdot H))
$$

(ii) The "tilt" \mathcal{A} of $\operatorname{Coh}(S)$ with respect to the torsion pair:

- \mathcal{T} generated by torsion and semi-stable E with $\operatorname{deg}(\operatorname{ch}(E) \alpha H)>0$
- \mathcal{F} generated by torsion-free semi-stable E with $\operatorname{deg}(\operatorname{ch}(E) \alpha H) \leq 0$ satisfies the upper-half plane condition for objects of \mathcal{A}.

