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4. Quotients via GIT. Most interesting moduli spaces arise as quotients of
schemes by group actions. We will first analyze such quotients with geometric
invariant theory, then later consider “stack-theoretic” quotients.

Affine GIT: When a linearly reductive (affine!) linear group G acts on an
affine scheme X of finite type over C, then the sub-algebra of G-invariant
regular functions:

C[X]G ⊂ C[X]

is finitely generated, and the resulting morphism of affine schemes:

f : X = Spec(C[X])→ Spec(C[X]G) := XG

has the following properties:

(a) f is surjective.

(b) f(x) = f(x′) if and only if the closures of their orbits intersect.

(c) There is a unique closed orbit O(x) in each fiber f−1(y).

A closed point x ∈ X is stable if its orbit is closed and its stabilizer is finite.

(d) The subset XS ⊂ X of stable points is open, its image XG
S ⊂ XG is

open, and fS : XS → XG
S has the following “nice” properties:

(i) Each fiber of fS is a single orbit.

(ii) Each G-invariant open U ⊂ XS is f−1S (V ) for an open V ⊂ XG
S .

(iii) For U, V as in (ii), Γ(V,OXG) = Γ(U,OX)G ⊂ Γ(U,OX)

Remark: Any surjective map f : X → Y that is constant on orbits and
satisfies (i)-(iii) above is called a geometric quotient.

Examples: (a) The (left) action of SL(W ) on Amn = Hom(W,V ) leaves
invariant the subring

C[det(xi,jl)] ⊂ C[xij]

for multi-indices J = (j1, ..., jm) as in §2. The injective homomorphisms
have closed orbits with trivial stabilizers and all others have 0 in their orbit
closure. The quotient is the affine cone over the Grassmannian of §2.
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(b) The (conjugation) action of SL(W ) on Am2
= Hom(W,W ) has

C[tr = fm−1, ..., det = f0] ⊂ C[xij]

(the polynomial ring in the coefficients of the characteristic polynomial) as
its ring of invariants. There are no stable points, because all matrices have
positive-dimensional stabilizers, but the orbits of diagonalizable matrices are
closed. Any orbit of a matrix with off-diagonal entries in Jordan form is not
closed. The semi-simple matrices (distinct eigenvalues) have the smallest
stabilizers. Question: Is f : {semisimple matrices} → Am − {disc = 0}
nevertheless a geometric quotient?

(c) Does the action of SL(W ) on Symd(W ∗) (d > 2) have stable points? If
so, which homogeneous polynomials are stable? What about the case m = 2?

If σ : G×X → X is the action and x ∈ X, let σx = σ(∗, x) : G→ X.

Lemma 4.1: x is stable if and only if σx : G→ X is proper.

Proof: If σx is proper, then O(x) is closed, and the stabilizer Gx = σ−1x (x)
is complete and affine (G is affine!), hence finite. On the other hand, if O(x)
is closed, then to prove properness, it suffices to show that σx : G→ O(x) is
a finite morphism. Since the fibers are finite, the restriction of σx to σ−1x (U)
for some non-empty open subset U ⊂ O(x) is finite (Hartshorne exercise!).
Translation of U by elements of G then shows that σx is finite everywhere.

Proof of Affine GIT:

Step 1: C[X]G is a finitely generated algebra.

Consider the action of G on the vector space C[X]. If:

σ∗ : C[X]→ C[G]⊗C[X]

is the C-algebra homomorphism corresponding to σ, then the induced action
on functions: σ : G×C[X]→ C[X] is given by:

σ(g, r) =
n∑
i=1

si(g)ri where σ∗(r) =
n∑
i=1

si ⊗ ri

In particular, this is a finite sum, so each orbit O(r) = Gr ⊂ 〈r1, ..., rn〉 is
contained in a finite-dimension subspace of C[X], and then the linear span
of O(r) is finite-dimensional, and evidently G-invariant. The actions of G on
infinite-dimensional vector spaces with this property are called rational.
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Linearly reductive means that for each finite-dimensional representation
ρ : G → GL(V ) and each invariant subspace W ⊂ V , there is a (unique)
complementary invariant subspace W ′ ⊂ V with V = W ⊕W ′. We apply
this to the rational action of G on C[X] to define the Reynolds operator

E : C[X]→ C[X]G

which is the linear projection onto the subspace invariant functions.

Definition of E: If V is any vector space on which G acts rationally, and
if v ∈ V is not invariant, let W be a finite-dimensional invariant subspace
containing v (by rationality) and then decompose W = WG ⊕ WG as the
sum of the subspace of invariant vectors and the complementary invariant
subspace WG (using the linear reductivity of G). Then v 6∈ WG, so WG is
nonempty, invariant and WG ∩ V G = 0. Apply Zorn’s lemma to the set of
invariant subspaces T ⊂ V with T ∩ V G = 0. Let VG be a maximal such.
If V G + VG 6= V , choose v in the complement, let W be finite dimensional
an invariant containing v, and let W ′ be the invariant complement of the
invariant subspace W ∩ (VG +V G) ⊂ W . Then the span of VG and W ′ would
give a larger invariant subspace T in our set, violating maximality. Similarly,
one shows that VG contains every T in the set, hence is uniquely determined.
The Reynolds operator E is now uniquely defined by the property that it has
VG as its kernel and projects onto V G.

Properties of E:

(a) The Reynolds operators commute with G-linear maps u : V → V ′ of
vector spaces on which G acts rationally.

(b) If u : V → V ′ in (a) is surjective, then uG : V G → V ′G is surjective.

(c) The Reynolds operator for C[X] satisfies the “Reynolds identity”:

E(xy) = xE(y)

for all x ∈ C[X]G and y ∈ C[X]

(d) If Iλ is a family of invariant ideals in C[X], then

(
∑
λ

Iλ) ∩C[X]G =
∑
λ

(Iλ ∩C[X]G)
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Proofs: Let E ′ be the Reynolds operator for V ′. To show that E ′ ◦ u =
u ◦ E, it suffices to show that u(V G) ⊂ (V ′)G and u(VG) ⊂ (V ′)G. The first
inclusion is obvious. For the second, suppose that v ∈ VG, and let W be a
finite-dimensional invariant subspace of VG containing v. Then W ∩ ker(u) ⊂
W is invariant, so we can take its invariant complement W ′ ⊂ W . But then
u maps W ′ isomorphically onto u(W ′) = u(W ), hence u(W ) is invariant and
u(W ) ∩ (V ′)G = 0, so u(W ) ⊂ (V ′)G, so u(v) ∈ (V ′)G.

As for (b), just apply (a)(!)

(V ′)G = E ′(V ′) = E ′(u(V )) = u(E(V )) = u(V G)

For (c), apply (a) to the G-linear endomorphism y 7→ xy of C[X].

Finally, apply (a) to the G-linear inclusions Iλ ⊂ C[X] of spaces with
rational G-actions. Then E(f) ∈ Iλ∩C[X]G for each f ∈ Iλ, so if f =

∑
fλ ∈

(
∑
Iλ)∩C[X]G (a finite sum!), then f = E(f) =

∑
λE(fλ) ∈

∑
λ(Iλ∩C[X]G).

Proof of Step 1: Let f1, ..., fr be generators of C[X], and let V be a
finite-dimensional invariant subspace containing them (by rationality!). Then
for the induced action of G on C[x1, ..., xn] = Sym∗(V ), the surjective map

u : C[x1, ..., xn]→ C[X]

is G-linear, so by (b) the induced map uG : C[x1, ..., xn]G → C[X]G is also
surjective. Thus it suffices to show that C[x1, ..., xn]G is finitely generated.

Since the action of G on C[x1, ..., xn] preserves degree, C[x1, ..., xn]G is
graded, too. Let I ⊂ C[x1, ..., xn] be the ideal generated by all positive-degree
invariant polynomials. Then I is a finitely generated homogeneous ideal and
generators F1, ..., Fm ∈ I may be chosen homogeneous and invariant.

We claim that 1, F1, ..., Fm generate C[x1, ..., xn]G as an algebra. Indeed,
by induction, we may assume that 1, F1, ..., Fm generate C[x1, ..., xn]G in
degrees less than d. If P is homogeneous of degree d and invariant, then
P ∈ I, so we can write P =

∑
QiFi for Qi ∈ C[x1, ..., xn], and by (c), we

then have
P = E(P ) =

∑
E(Qi)Fi

Since the degrees of the E(Qi) are all smaller than d, they are in the algebra
generated by 1, F1, ..., Fm, and we are done.
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Step 2: The rest of the proof of Affine GIT. We start with a geometric
version of property (d) of the Reynolds operator. If (Zλ) ⊂ X is a family of
closed, invariant subsets, then:

f(∩Zλ) = ∩f(Zλ).

Now suppose Z ⊂ X is closed and invariant and y ∈ f(Z) is a closed
point. Then since f−1(y) is also closed and invariant, it follows that

f(Z ∩ f−1(y)) = f(Z) ∩ {y} = {y}

so Z ∩f−1(y) 6= ∅ and y ∈ f(Z). Thus f maps invariant closed sets to closed
sets. In particular, the map f itself, which is dominant, is thus surjective.

And if f(x) = f(x′) = y, then

f(O(x) ∩O(x′)) = f(O(x)) ∩ f(O(x′)) = {y},

so O(x)∩O(x′) 6= ∅. If O(x) is an orbit of minimal dimension in f−1(y), then
O(x) = O(x), otherwise Z := O(x) − O(x) would be invariant, of smaller
dimension, containing smaller dimensional orbits. So O(x) is closed. But
uniqueness follows since any two of these intersect!

Finally, consider Ψ = (σ, id) : G×X → X ×X. If (x, x) ∈ ∆ is a closed
point, then Ψ−1(x, x) is isomorphic to the stabilizer Gx. Moreover, there is
a section of Ψ over the diagonal given by (x, x) 7→ (1, x). Thus we can apply
uppersemicontinuity at the section, and because the fibers are groups:

Xreg := {x ∈ X|Gx is of minimal dimension}

is invariant and open in X. If the minimal dimension is positive, there is
nothing to prove. Otherwise, X−Xreg is closed and invariant, so f(X−Xreg)
is closed, and XG

S = XG − f(X −Xreg) and XS = f−1(XG
S ) are both open.

Finally, we need to see why fS : XS → XG
S is a geometric quotient.

Property (i) is done already. For (ii), suppose U ⊂ XS is open and invariant.
Then Z = X − U is closed and invariant, so f(Z) is closed, and one checks
that f−1(XG

S − f(Z)) = U . This gives (ii). Finally, suppose that V = D(f)
is the open affine subset of XG defined by the nonvanishing of f ∈ C[X]G.
Then Γ(V,OXG) = C[X]Gf , and Γ(f−1(V ),OX) = C[X]f . But it is a simple
consequence of the Reynolds identity (Property (c)) that C[X]Gf is the ring
of invariants of C[X]f and (iii) follows.
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Now suppose (X,L) is a projective scheme with an ample line bundle.
An action of G on X is linearized (with respect to L) when the action is
extended to an action on the geometric line bundle L such that:

σg(a+ b) = σg(a) + σg(a) and σg(ka) = kσg(a)

for a, b over a point x ∈ X. This gives an action on the local sections of L:

σg(s)(p) = σg(σ
∗
g(s)(σ

−1
g (p)))

Suppose in addition that L is very ample, and that the complete linear
series embedding: f : X ↪→ Pn with L = f ∗OPn(1) is projectively normal,
i.e. that the map:

C[x0, ..., xn]→ ⊕Γ(X,L⊗d)

is surjective, and an isomorphism in degree 1. (This can always be arranged
by replacing L with a large enough tensor power L⊗m). Then the linearized
action of G is an action of G on the affine cone C(X) ⊂ An+1 over X, which
preserves the grading of the (affine) coordinate ring:

C[x0, ..., xn]/I(X) = C[C(X)]

and, of course, C(X) = Spec(C[X]) and X = Proj(X).

If x ∈ X is a closed point, let x̃ ∈ C(X) denote any lift of x to C(X)−{0}.
The following are easily seen to be well-defined, independent of x̃:

Definition: With respect to a linearized action of G on (X,L):

(i) x ∈ X is unstable if 0 ∈ O(x̃).

(ii) x ∈ X is semistable if 0 /∈ O(x̃).

(iii) x ∈ X is stable if O(x̃) is closed with finite stabilizer.

Definition: With respect to a linearized action of G on (X,L) :

(i) XU(L) := {unstable points of X}.
(ii) XSS(L) := {semistable points of X} = X −XU(L).

(iii) XS(L) := {stable points of X} ⊂ XSS(L).

Definition: If G is linearly reductive, with linearized action on (X,L), then:

f : X = Proj(C[C(X)])−− > Proj(C[C(X)]G) =: XG

is the associated (projective) GIT quotient of X by G.
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Projective GIT: The map f has the following properties:

(a) f is defined on XSS(L), and fSS : XSS(L)→ XG is surjective.

(b) XS(L) ⊂ X is also open, its image XG
S ⊂ XG is open, and

fS : XS(L)→ XG
S

is a geometric quotient.

(c) If x, x′ ∈ XSS(L), then f(x) = f(x′) iff O(x) ∩O(x′) ∩XSS(L) 6= ∅.
(d) If Z ⊂ XSS(L) is closed and invariant, then f(Z) ⊂ XG is closed.

Proof: By definition, the projective GIT quotient descends from the
affine GIT quotient of the cones (minus their origins!):

C(X)
f→ C(X)G

∪ ∪
C(X)− {0} C(X)G − {0}

π ↓ π ↓

X
f

−− > XG

By affine GIT, f−1(0) = {0} ∪ X̃U(L), the lifts of the unstable points,
and it follows that X̃SS(L) (and hence XSS(L)) is open in C(X), and that f
is defined on XSS(L). This gives (a). Notice that f−1(0) = V (C[C(X)]Gd ) is
precisely the common zero locus of the homogeneous ideal generated by the
invariant homogeneous polynomials of positive degree.

The homogeneous polynomials h ∈ C[C(X)]Gd of positive degree thus give
an open cover: ∪D(h) = XSS(L). Each such open set is invariant, and the
restriction fh : D(h) = Spec(C[C(X)](h)) → Spec(C[C(X)]G(h)) = D(h)G is
precisely the affine GIT quotient (Reynolds identity again!). Part (b) follows
from affine GIT, provided we can show that the two notions of stability
coincide for points of D(h). Suppose that x ∈ D(h) and x̃ is any lift. Then
Gx̃ ⊂ Gx and Gx/Gx̃ is in bijection with O(x̃) ∩ π−1(x), which is finite since
x is semi-stable. So one stablizer is finite iff the other one is, too. Once the
stabilizers are finite, it follows that O(x) is closed if and only if x is stable, if
and only if for each y 6∈ O(x) there is a p ∈ C[C(X)]G(h) so that p(x) = 0 and

p(y) 6= 0. But if this is true, then p = P
hd

for some invariant homogeneous P
(and d) and then P (ỹ) 6= 0 while P (x̃) = 0. Conversely, once a homogeneous

P separates ỹ from O(x̃), then p = Pk

hd
separates y from O(x).
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And now that we have established that the GIT quotient D(h)→ D(h)G

corresponds to the affine GIT quotient, properties (c),(d) follow easily.

Warning: This doesn’t say that stable points in X have closed orbits in X!
For example, consider the action of C∗ on C[x, y] given by:

σλ(x) = λx, σλ(y) =
1

λ
y

Then the GIT quotient is:

f : P1 −− > Proj(C[xy]) = pt

and all points of P1 other than 0,∞ are stable, while 0,∞ are unstable.

When we consider the “cone” C2, we see that the orbits of (a, b) = ˜(a : b)
other than (0, b) and (a, 0) are closed (they are the hyperbolas xy = constant)
but the orbit of (a : b) down on P1 is not closed!!!

So there is a trade-off here. If we want a projective quotient, we take
semi-stable points. If we want a geometric quotient, we take stable points
(giving a quasi-projective quotient). We’d like the projective quotient to
have some nice property, too. There is one:

Definition: A categorical quotient of the action of G on a scheme X is
a morphism f : X → Y to a scheme Y satisfying:

(i) f is constant on the orbits of the closed points of X.

(ii) For any scheme T and morphism φ : X → T which satisfies (i), there
is a uniquely determined morphism ψ : Y → T such that φ = ψ ◦ f .

It follows from general nonsense that a categorical quotient is unique.
The following criterion is useful for detecting them:

Lemma 4.2: If G acts on X, and f : X → Y is a morphism which is
constant on orbits, then it is a categorical quotient if:

(i) For all open V ⊂ Y , f ∗(Γ(V,OY )) = Γ(f−1(V ),OX)G, and

(ii) If Z ⊂ X is invariant and closed, then f(Z) is closed. If (Zλ) is a
system of invariant closed subsets of X, then

f(∩Zλ) = ∩f(Zλ)
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Proof: (i) implies f is dominant, and (ii) implies it is surjective. Suppose
that φ : X → T is constant on orbits. We need to construct ψ : Y → T .
Choose an affine open cover (Wλ) of T , and let Zλ = X − φ−1(Wλ). These
are closed and invariant in X, so by (ii), Vλ = Y − f(Zλ) are open in Y ,
and f−1(Vλ) ⊂ φ−1(Wλ). Since (Wλ) is an open cover of T , it follows that
∩Zλ = ∅, so by (ii), ∩f(Zλ) = ∅, so (Vλ) is an open cover of Y .

If ψ : Y → T satisfies φ = ψ ◦ f , then we must have ψ(Vλ) ⊂ Wλ for all
λ, so the restriction of ψ to each Vλ is determined by a ring homomorphism
rλ : Γ(Wλ,OT ) → Γ(Vλ,OY ). But by property (ii), Γ(Vλ,OY ) injects as the
invariant subring of Γ(f−1(Vλ),OX), which contains the invariant subring of
Γ(φ−1(Wλ),OX), so the rλ are uniquely determined by the requirement
that φ = ψ ◦f . Thus the resulting maps from Vλ to Wλ are uniquely defined,
and glue together to give ψ.

Corollary 4.3: (a) Any geometric quotient is categorical.

(b) Any affine GIT quotient f : X → XG is categorical.

(c) Any projective GIT quotient fSS : XSS(L)→ XG is categorical.

Proof: All three quotients satisfy the conditions of the Lemma...the first
by definition, the second from the proof of Affine GIT, and the third from
the local (on XSS(L)) identification of the projective GIT quotient with the
affine GIT quotient.

Assume that a linearized action of G on (X,L) is given (for L as above).
We want some practical method for detecting the stability (or instability) of
points x ∈ X. The method given here dates back to Hilbert, and is usually
called the Hilbert-Mumford numerical criterion. Roughly speaking,
the idea is that if a point x ∈ X is unstable, then its lifts x̃ can be run off to
0 ∈ C(X) using the group elements of a subgroup C∗ ⊂ G.

Definition: A one-parameter subgroup of G (abbreviated 1-PS) is a
non-trivial homomorphism λ : C∗ → G

If σx̃ ◦ λ : C∗ → C(X) extends to a morphism τ : C → C(X) we will
write

lim
t→0

λ(t)x̃ = τ(0)

and say the limit exists. Otherwise, we will write limt→0 λ(t)x̃ =∞ and say
that the limit doesn’t exist.
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Definition: Given a 1-PS λ, then we say x is:

(i) λ-stable if limt→0 λ(t)x̃ =∞.

(ii) λ-semistable if limt→0 λ(t)x̃ 6= 0 (i.e. if the limit exists, it is not 0)

(iii) λ-unstable if limt→0 λ(t)x̃ = 0 ∈ C(X).

Note: Since X is proper, σx ◦ λ : C∗ → X always extends uniquely to
τ : C→ X. The point x is λ-stable when τ doesn’t lift to τ : C→ C(X).

Theorem (The Numerical Criterion): If G = SL(m,C), then:

(a) x ∈ XSS(L) if and only if x is λ-semistable for all 1-PS λ.

(b) x ∈ XS(L) if and only if x is λ-stable for all 1-PS λ.

Proof: One direction is easy. If x is not λ-semistable for some λ, then 0
is in the closure of the orbit of x̃ under that action of C∗, hence under the
action of G. So x /∈ XSS(L).

And if x is not λ-stable for some λ, then σx̃ ◦ λ : C∗ → C(X) extends
to a map from C. On the other hand, every representation of C∗ splits into
one-dimensional invariant subspaces. So there is a basis for Cm under which
the image of C∗ in SL(m,C) has the form:

diag{tr1 , ..., trm} :=



tr1 0
tr2

. . .

trm−1

0 trm


with

∑
ri = 0. Since λ is non-trivial, it must be that some ri < 0, and

λ : C∗ → G therefore cannot be extended to a map from C. But this means
σx̃ : G→ C(X) is not proper by the valuative criterion, so x /∈ XS(L).

To get the converses, let O = C[[t]] be the ring of formal-power series
and K = C((t)). Then by the (analytic) valuative criterion:

(a) σx̃ : G→ C(X) is not proper iff there is a morphism α : Spec(K)→ G
such that σx̃ ◦ α extends to a morphism τ : Spec(O) → C(X), but α does
not extend to a morphism Spec(O)→ G.
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(b) 0 is in the closure of σx(G) iff there is a morphism α as above, where
the closed point of Spec(O) is sent to 0 under τ .

So suppose x is not stable. Let α be the map from (a). Such a map
is equivalent to an element of SL(n,K), that is, to a matrix M(t) whose
entries are each in some t−kO. By the theory of elementary divisors there
are matrices A(t) and B(t) in SL(n,O) that diagonalize M(t):

A(t)M(t)B(t) = diag{tr1 , ..., trm}

where
∑m
i=1 ri = 0 and because α did not extend, some ri is negative. Define:

λ(t) = A(t)M(t)B(t)B(0)−1

and I claim that limt→0 λ(t)x̃ 6=∞.

The action of G on the affine cone C(X) ⊂ Cn+1 is induced from a linear
action ofG on Cn+1 by definition, so the action of λ on Cn+1 diagonalizes. Let
e0, ..., en be a basis with the property that λ(t)ei = tsiei with s0 ≤ ... ≤ sn.
Let b̂i,j(t) be the (power series) entries of the matrix B(0)B(t)−1 acting on

V with respect to this basis. In particular, b̂i,j(0) = δi,j.

Then if we write x̃ =
∑
xiei, we have:

A(t)M(t)x̃ =
∑
i xiA(t)M(t)ei =

∑
i xiλ(t)B(0)B(t)−1ei

=
∑
i xiλ(t)

(∑
j b̂i,j(t)ej

)
=

∑
j

(∑
i b̂i,j(t)xi

)
tsjej

By assumption, this has a finite limit, but since b̂i,j(0) = δi,j, this implies
that xj = 0 when sj < 0, and then limt→0 λ(t)x̃ =

∑
limt→0 t

sjxjej 6=∞ and
x̃ is not λ-stable(!)

If in addition limt→0M(t)x̃ = 0, then in the previous paragraph, xj = 0 if
sj ≤ 0, and x̃ is not λ-semistable. This completes the proof of the theorem.

Remark: In the proof, the theory of elementary divisors was used to convert
the valuative criterion into a 1-PS. A theorem of Iwahori says that the theory
of elementary divisors also holds for any linearly reductiveG, so the numerical
criterion always applies.
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Example 1 (Unordered Points on P1):

Choose the basis x0 = xd, x1 = xd−1y, ..., xd = yd for Cd+1 = Symd(C2)∗

(from a choice of basis x, y for (C2)∗) and consider the induced action of
SL(2,C) on:

Pd = Proj(C[x0, ..., xd])

A point of Pd “is” an effective divisor p1+...+pd on P1, since the homogeneous
polynomial F (x, y) with roots p1, ..., pd is linear in the x0, ..., xd. The set of
unstable points for the action (with natural linearization to L = OPd(1)) is
the set of common zeroes of the invariant polynomials:

C[x0, ..., xd]
SL(2.C)
>0 = Sym>0(SymdC2)∗

This ring is complicated! For example, when d = 4, it is generated by:

P =
1

6
(x22 − 3x1x3 + 12x0x4) and

Q = x0x2x4 −
3

8
x0x

2
3 −

3

8
x21x4 +

1

8
x1x2x3 −

1

36
x32

but we can simply describe the unstable (and semi-stable) loci with the
numerical criterion. If λ is any 1-PS of SL(2,C), then λ(t) = diag{t−r, tr}
for a (dual) basis x, y ∈ C2∗, and then λ acts by:

λ(t)(xk) = tr(2k−d)xk

for xk = xd−kyk with respect to this particular basis.

Thus the numerical criterion says that p1+...+pd is stable if and only if in
every basis, limt→∞ λ(t)(F (x, y)) =∞, which is to say that some monomial
xd−kyk satisfying 2k − d < 0 has a non-zero coefficient in F (x, y). That is,
in every basis, there is no factorization F (x, y) = ykG(x, y) for k ≥ d

2
. But

this says that F (x, y) (in any basis) has no linear factor of multiplicity ≥ d
2
,

or equivalently that the divisor p1 + ...+ pd has no point of multiplicity ≥ d
2
.

Thus Pd
S is the complement of the “deep diagonal” of divisors of the form

kp+ pk+1 + ...+ pd for k = d
2

(or d+1
2

if d is odd). If d is even, then there will
be semi-stable points that are not stable, when k = d

2
and no other pi = p.

Among all such d-tuples, there is a unique closed orbit, corresponding to the
(unique!) orbit of the d-tuples of the form d

2
p+ d

2
q.
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You can see this with the numerical criterion. A polynomial

F (x, y) = cx
d
2 y

d
2 + (higher order in y)

will have limt→0 λ(t)F (x, y) = cx
d
2 y

d
2 for the one-parameter subgroup above.

Example 2: (Ordered Points on P1): Here, we want to consider instead:

P1 ×P1 × ...×P1 = (P1)d

with the action of SL(2,C). In this case, unlike the previous one, there is
some choice for the line bundle L. Namely, if

L = O(a1, a2, ...., ad)

with the obvious linearization, then we are looking at:

(P1)d = Proj(C[{xk11 ya1−k11 ⊗ · · · ⊗ xkdd y
ad−kd
d }aiki=0])

which looks even more intimidating than the previous example. But the
same analysis with the numerical criterion shows that (p1, p2, ..., pd) ∈ (P1)d

is stable (respectively semistable) for this linearized action if and only if:

∑
j

aij < (resp. ≤)

∑
i ai
2

whenever p = pi1 = ... = pij = ... coincide. For example, if d = 4 then:

(a) The stable points for the “balanced” linearization (1, 1, 1, 1) are:

(P1)4 − ∪∆ij

the complement of the pairwise diagonals. The semi-stable points are:

(P1)4 − ∪∆ijk

the complement of the triple diagonals, and there are 3 closed orbits that are
semi-stable, but not stable, given by:

∆12 ∩∆34 −∆1234, ∆13 ∩∆24 −∆1234, ∆14 ∩∆23 −∆1234
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This example, at least, is easy to analyze. The invariants are all generated
by the “cross ratio” linear invariants:

F = (x1 ⊗ y2 − x2 ⊗ y1)⊗ (x3 ⊗ y4 − y3 ⊗ x4)

G = (x1 ⊗ y3 − y1 ⊗ x3)⊗ (x2 ⊗ y4 − x4 ⊗ y2)

(where the tensors in G reordered in the obvous way) and:

f : (P1)4 −− > P1 = Proj(C[F,G])

takes the three semi-stable (but not stable) orbits described above to the
points 0 = (0 : 1),∞ = (1 : 0) and 1 = (1 : 1), respectively.

(b) The stable points for the linearization (1, 1, 1, 2) are:

(P1)4 − (∆14 ∪∆24 ∪∆34 ∪∆123)

and all semistable points are stable.
(c) There are no stable points for the linearization (1, 1, 1, 3). The locus

of semi-stable points is:

(P1)4 − (∆14 ∪∆24 ∪∆34)

and there exactly one closed semi-stable orbit, namely ∆123 −∆1234.

Final Remark: In this last example, we see that by varying the linearizing
line bundle L, we can change the GIT quotient. On the other hand, it is easy
to see (for example using the numerical criterion) that replacing L by a tensor
power L⊗m (with induced linearization) does not change the GIT quotient.
Since the set of stable points is open, it follows that any two GIT quotients
(with stable points) are birational. The study of the precise relationship
among such quotients was undertaken by Thaddeus and Dolgachev-Hu.
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