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5. Vector Bundles on a Smooth Curve. We will construct projective
moduli spaces for semistable vector bundles on a smooth projective curve C
by applying GIT to a suitable Grothendieck Quot scheme. The construction
we present here is due to Carlos Simpson.

Let E be a vector bundle on a smooth projective curve C of genus g.

Definition: (a) The slope µ(E) = deg(E)/rk(E).

(b) E is stable if µ(F ) < µ(E) for all proper subbundles F ⊂ E.

(c) E is semistable if µ(F ) ≤ µ(E) for all F ⊂ E.

Lemma 5.1: If 0 → F → E → G → 0 is an exact sequence of vector
bundles, then µ(F ) ≥ µ(E) (resp.>) if and only if µ(E) ≥ µ(G) (resp. >).

Proof: Arithmetic! If a, b, c, d > 0, then a
c
> a+b

c+d
if and only if b

d
< a+b

c+d
.

Examples: (i) Every vector bundle on P1 splits as a sum of line bundles, so
only the line bundles OP1(d) are stable, and only OP1(d)⊕n are semistable.

(ii) E is (semi-)stable iff the dual bundle E∗ is (semi-)stable.

(iii) E is (semi-)stable iff E ⊗ L is (semi-)stable for all line bundles L.

(iv) If E is semistable of rank r and degree d and:

(a) d < 0, then H0(C,E) = 0.

(b) d > r(2g − 2), then H1(C,E) = 0.

(c) d > r(2g − 1), then E is generated by its global sections.

(Schur’s) Lemma 5.2: (a) If E and F are stable with the same slope, then
any map f : E → F is either 0 or an isomorphism.

(b) The only automorphism of a stable bundle E is scalar multiplication.

(c) (Jordan decomposition) If E is semistable, there is a filtration:

0 = E0 ⊂ E1 ⊂ ... ⊂ En = E

such that Fi := Ei/Ei−1 is a stable vector bundle and each µ(Fi) = µ(E).
The filtration is not canonical, in general, but the associated graded bundle
⊕ni=1Fi is independent of the choice of filtration.
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Proof: If f : E → F is not zero, then both ker(f) and E/ker(f) are
bundles. If f isn’t injective, then the stability of E implies µ(ker(f)) < µ(E)
and by Lemma 5.1, µ(E/ker(f)) > µ(E) = µ(F ), contradictng the stability
of F . So f is injective, and surjective by the stability of F . This gives (a).

If α : E → E is an automorphism, let λx be an eigenvalue of the restriction
of α to the fiber of E over x ∈ C. Then α − λx(id) drops rank at x, so it is
not an isomorphism, and must be zero by (a) and we have (b). Finally, (c)
follows from (a) by the usual Jordan-Hölder decomposition.

(Harder-Narasimhan) Lemma 5.3: If E is an any vector bundle on C,
then there is a filtration:

0 = E0 ⊂ E1 ⊂ ... ⊂ En = E

such that Fi := Ei+1/Ei are semistable vector bundles, with µ(Fi) > µ(Fi+1).
This filtration is uniquely determined by the property that if F ⊂ E is any
sub-bundle with µ(F ) ≥ µ(Ei), then F ⊂ Ei.

Proof: Let S = {a |a < µ(E) and a = µ(Q) for some quotient E → Q}.
We claim first that S is a finite set. Indeed, let D be a divisor of large enough
degree so that E(D) is generated by its sections. Then any Q(D) is also
generated by its sections, so deg(Q(D)) ≥ 0 and µ(Q) ≥ −deg(D). So the
elements of S are bounded below (and above!) and since the denominators
are bounded above by r, it follows that S is finite.

Finiteness of S implies that the set of slopes of sub-bundles F ⊂ E is
bounded from above. Let E1 ⊂ E be the sub-bundle of maximal rank among
those of maximal slope. Then E1 is semi-stable and E/E1 is a vector bundle.
If F ⊂ E is another sub-bundle with µ(F ) = µ(E1), then the span of F and
E1 is yet another sub-bundle of the same slope (since the kernel of the map
from F⊕E1 to the span must have the same slope). Since E1 was of maximal
rank, it follows that F ⊂ E1 which then has the desired property.

Now suppose inductively that the lemma holds for F = E/E1. We may
use the Harder-Narasimhan filtration of F :

0 = F0 ⊂ F1 ⊂ .... ⊂ Fn−1 = F = E/E1

to uniquely define Ei+1 by the condition that Ei+1/E1 = Fi. And it follows
that this filtration has the desired property.
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Thus every vector bundle on C is an extension of stable vector bundles,
which are the “indecomposable” objects. They also have the smallest possible
group of automorphisms, namely C∗, though there are vector bundles with
this automorphism group (called simple vector bundles) which are not stable.

The following theorem is due to Narasimhan and Seshadri:

Theorem 5.4: For each pair (r, d) of coprime positive integers, the functor:

Obj : schemes S with an equivalence class of vector bundles E on C × S
with the property that each Es is stable, of rank r and degree d

(and E ∼ F ⇔ E ∼= F ⊗ π∗Λ for some line bundle Λ on S)

Mor : morphisms φ : S → S ′ such that (φ, id)∗E ′ ∼ E

is represented by a projective scheme MC(r, d) which is irreducible and
smooth, of dimension r2(g − 1) + 1.

Proof: We need two key lemmas, the first solving a GIT problem, and
the second having to do with the boundedness of families of sheaves on C.

(GIT) Lemma 5.5: If V and W are vector spaces and M is an integer, let

G(V ⊗W,M)

be the Grassmannian of M -dimensional quotients of V ⊗W . Then a point
ψ ∈ G(V ⊗W,M) is semistable (resp. stable) with respect to the natural
line bundle and linearization of SL(V ) if and only if

dim(H)

dim(V )
≤ dim(ψ(H ⊗W ))

M
(resp. <)

for every proper subspace H ⊂ V .

Proof: Let N = dim(V ) and R = dim(W ) with a fixed basis w1, ..., wR.
An point ψ ∈ G(V ⊗W,M) lifts to ψ̃ = ∧Mψ ∈ ∧M(V ⊗W )∗ in the natural
linearization. Given any basis e1, ..., eN of V and dual basis x1, ..., xN , we’ll
call ei1 ⊗wj1 ∧ ...∧ eiM ⊗wjM the induced basis of Plücker vectors. Thus the

coordinates of ψ̃ are the values:

∧Mψ(ei1 ⊗ wj1 ∧ ... ∧ eiM ⊗ wjM ) = ψ(ei1 ⊗ wj1) ∧ ... ∧ ψ(eiM ⊗ wjM ) ∈ C

which are zero if and only if the ψ(eik ⊗ wjl) are not linearly independent.
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If λ = diag{tr1 , ..., trN} is a 1-PS of SL(V ) and x1, ..., xN is the associated
(dual) basis, we’ll say the weight of the Plücker vector above is

∑M
j=1 rij .

Then ψ is λ-unstable for this λ if and only if ∧Mψ vanishes on every Plücker
vector of nonpositive weight.

Suppose H ⊂ V has dimension n, dim(ψ(H ⊗W )) = m and n
N
> m

M
.

Let e1, ..., en be a basis of H, extended to a basis e1, ..., eN of V and let
λ = diag{tn−N , ..., tn−N , tn, ..., tn} for the dual basis. For each Plücker vector,
if ∧Mψ(ei1 ⊗ wj1 ∧ ... ∧ eiM ⊗ wjM ) 6= 0, then ψ(ei1 ⊗ w1), ..., ψ(eiM ⊗ wM)
must be linearly independent, so the eij must involve at most m of the
e1, ..., en vectors, thus its weight must be at least m(n − N) + (M − m)n.
But Mn−mN > 0 by assumption, so ∧Mψ is λ-unstable for this λ.

Conversely, let λ be any 1-PS, diagonalized as λ = diag{tr1 , ..., trN} for a
basis x1, ..., xN . If ψ is λ- unstable, let Hn be the span of e1, ..., en, and let
mn = dim(ψ(Hn ⊗W )). Then λ-instability tells us:

(∗) r1m1 + r2(m2 −m1) + ...+ rN(M −mN−1) > 0

because it is the minimal weight of a Plücker vector on which ∧Mψ is nonzero.
I claim that for some n, the “averaged” weights also satisfy:

1

n
(r1 + ...+ rn)mn +

1

N − n
(rn+1 + ...+ rN)(M −mn) > 0

It then follows that n
N
> mn

M
holds for H = Hn. To see the claim, notice first

that if mi+1 −mi ≤ mi −mi−1, then we may combine ri and ri+1, replacing
them with their average ri+ri+1

2
without decreasing (∗). The averaged weights

are the same as the original, so we may assume the sequence of differences
is increasing: ∆1 := m1 < ∆2 := m2 −m1 < ... < ∆N := mN −mN−1. Now
consider the linear function:

L(t1, t2, ..., tN) = r1t1 + ...+ rN tN

which by assumption satisfies L(∆1, ...,∆N) > 0, and consider its values at
the points:

pn := (

∑n
i=1 ∆i

n
, ...,

∑n
i=1 ∆i

n
,

∑N
i=n+1 ∆i

N − n
, ...,

∑N
i=n+1 ∆i

N − n
) ∈ RN

These points are linearly independent and L(pN) = 0 (the ri sum to zero).
Thus they span the hyperplane {∑ ti =

∑
∆i} ⊂ RN and in particular,

(∆1, ...,∆N) =
∑N−1
i=1 yipi− yNpN for positive values yi, so some L(pi) > 0.
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Thus, we’ve shown that n
N
> m

M
if and only if ψ is λ-unstable for some λ.

By the numerical criterion, this proves the “semi-stable” part of the lemma,
and the stable part is proved by replacing each “>” by a “≥.”

Lemma 5.6: Let p ∈ C, and OC(1) := OC(p). If n > 2g − 1− d
r

then:

(a) If E is semistable of rank r and degree d, then H1(C,E(n)) = 0, E(n)
is generated by global sections and for all subbundles F ⊂ E:

h0(C,F (n))

rank(F )
≤ h0(C,E(n))

rank(E)

with equality if and only if F is semistable, h1(C,F (n)) = 0 and for all m:

χ(C,F (m))

rank(F )
=
χ(C,E(m))

rank(E)

(b) If E is any coherent sheaf of the same Hilbert polynomial χ(C, E(n)) =
P (m) = rm+ d− r(g − 1) as a vector bundle of rank r and degree d, and if
every vector bundle quotient E → G satisfies:

h0(C,G(n))

rank(G)
≥ P (n)

r
,

then E is itself a semistable vector bundle of rank r and degree d.

Proof: The key point is the following. If E is a semistable bundle of
rank r and if h1(C,E) 6= 0, then h0(C,E) ≤ rg independent of the degree of
E. This is well-known for line bundles, since every L with h1(C,L) 6= 0 is a
subsheaf of the canonical line bundle and h0(C, ωC) = g. But here’s a proof
that generalizes. If h1(C,L) 6= 0, then deg(L) ≤ 2g − 2. If h0(C,L) ≥ g,
then there is a section s ∈ H0(C,L) vanishing at any p1, ..., pg−1 ∈ C. If the
pi are “general,” then h0(C,OC(

∑
pi)) = 1 and from:

0→ OC(
∑

pi)→ L→ τ → 0

and deg(τ) ≤ g − 1 it follows that h0(C,L) ≤ 1 + h0(C, τ) ≤ g.

If E is semistable of rank r and h1(C,E) 6= 0, then by Example (iv) we
have deg(E) ≤ r(2g − 2) and deg(F ) ≤ r′(2g − 2) for any subbundle F ⊂ E
of rank r′. If h0(C,E) ≥ rg, then there is a section s ∈ H0(C,E) vanishing
at any g − 1 points, and then we get OC(

∑
pi) ⊂ E spanning a line bundle

L ⊂ E of degree ≤ 2g − 2 satisfying h0(C,L) ≤ g as above.
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If h0(C,E) ≥ rg, then h0(C,E/L) ≥ (r − 1)g and we can find a section
s′ ∈ H0(C,E/L) which again can be chosen to vanish at g−1 general points.
The two sections s, s′ will span a sub-bundle F ⊂ E of degree ≤ 2(2g − 2)
which then has at most 2 + 2(g − 1) = 2g sections from the exact sequence:

0→ OC(
∑

pi)⊕OC(
∑

p′i)→ F → τ → 0

and then one considers sections of E/F , etc.

We already saw that the first part of (a) is satisfied in Example (iv).
Notice that:

χ(C,E(n))

r
=
P (n)

r
= n+

d

r
− (g − 1)

Thus any semistable bundle F of rank r′ ≤ r and slope µ ≤ d
r

must satisfy

h0(C,F (n)) = χ(C,F (n)) ≤ r′

r
P (n), or else h0(C,F (n)) ≤ r′g < r′

r
P (n) by

the key point above (and the lower bound n > 2g − 1− d
r
).

If F ⊂ E and E is semistable, then every Fi in the Harder-Narasimhan
filtration of F has slope at most d

r
, so each subquotient Fi satisfies

h0(C,Fi(n))

rk(Fi)
≤ P (n)

r

and by Lemma 5.1, we have the same inequality for F . If equality holds, then
it must hold for every Fi, and we conclude that every Fi has slope exactly d

r
,

so F is semistable, and χ(C,F (m))
rk(F )

= P (m)
rk(E)

for all m. This proves (a).

If E is the sheaf in (b), let T ⊂ E be the torsion subsheaf, and let G be the
(semistable) quotient of smallest rank in the Harder-Narasimhan filtration of
E/T . Since µ(G) ≤ µ(E/T ) ≤ d

r
, it follows as above that:

h0(C,G(n))

rk(G)
≤ P (n)

r

with equality if and only if T = 0 and µ(G) = µ(E). But this means E = G!

We are ready for the proof of Theorem 5.4 now.

Let P (m) = rm + d− r(g − 1) be the Hilbert polynomial of a bundle of
rank r and degree d as in Lemma 5.6, and for fixed n > 2g− 1− d

r
, consider

the Quot scheme
Quot(V ⊗OC(−n), P (m))

where V is a vector space of rank P (n) (with SL(V ) action).
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If E is any semistable bundle of rank r and degree d, then as we have
already remarked, E(n) is generated by global sections and H1(C,E(n)) = 0,
so h0(C,E(n)) = P (n) and the global section map V ∼= H0(C,E(n))→ E(n)
twists to give a point V ⊗OC(−n)→ E of the Quot scheme. Recall that the
Quot scheme embeds in Grassmannians:

ιm : Quot(V ⊗OC(−n), P (m)) ↪→ G(V ⊗W,M)

for each M = P (m) and sufficiently large m, and W = H0(C,OC(m− n)).

We will consider the GIT quotient of the Quot scheme for the action of
SL(V ) induced from the Grassmannian (and linearized as in Lemma 5.5).
For large enough m, the two notions of vector bundle (semi-)stability and
GIT (semi-)stability will coincide. When n, d are coprime, semi-stability
equals stability, and the GIT quotient will represent the functor. Deformation
theory will then show that the quotient is smooth, of the indicated dimension.

If x ∈ Quot(V ⊗ OC(−n), P (m)), let qx : V ⊗ OC(−n) → Ex be the
corresponding quotient. Such a quotient induces a map V → H0(C, Ex(n))
and for each (large enough) m, let ψx : V ⊗W → H0(C, Ex(m)) be the image
point in the Grassmannian. Let XU(m), XSS(m) and XS(m) be the loci of
unstable, semistable and stable points for this embedding.

Step 1: For large enough m (independent of x), if

(i) Ex is a semistable vector bundle and

(ii) V → H0(C, Ex(n)) is an isomorphism, then x ∈ XSS(m).

Proof: If x ∈ XU(m), then by Lemma 5.5, there is an H ⊂ V so that:

(∗) dim(H)

P (n)
>

dim(ψx(H ⊗W ))

P (m)

and we need to show that the existence of such an H violates (i) or (ii).

For each H ⊂ V , let Fx,H ⊂ Ex be the subsheaf generated by H⊗OC(−n).
Assuming (ii), we see that H ∼= H0(C,Fx,H(n)). Consider:

0→ Kx,H → H ⊗OC(−n)→ Fx,H → 0

and choose m0 so that m ≥ m0 implies that H1(C,Kx,H(m)) = 0 and
H1(C,Fx,H(m)) = 0, for all H ⊂ V and all x in the Quot scheme. Then
ψx(H ⊗W ) = H0(C,Fx,H(m)) is of dimension χ(C,Fx,H(m)).
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Thus if (∗) holds, then:

dim(H0(C,Fx,H(n)))

P (n)
>
χ(C,Fx,H(m))

P (m)
.

On the other hand, if we assume (i), then Lemma 5.6 (a) gives us:

dim(H0(C,Fx,H(n))

P (n)
<

rank(Fx,H)

r

(equality would force equality in the previous formula). But χ(C,Fx,H(m)) =
r′m+ d′ − r′(g − 1) for r′ = rk(Fx,H) and d′ = deg(Fx,H), so we are getting:

r′

r
>

dim(H0(C,Fx,H(n))

P (n)
>
r′(m+ d′

r′
− (g − 1))

r(m+ d
r
− (g − 1))

There are only finitely many d′ and r′, so since the right side approaches the
left as m→∞, we obtain a contradiction when m is sufficiently large.

Step 2: After possibly increasing m again, if x ∈ XSS(m) then:

(a) The map V → H0(C, Ex(n)) is an isomorphism and

(b) The quotient Ex is a semistable vector bundle.

Proof of Step 2: By Lemma 5.5, if x ∈ XSS(m) (for any m), then
V → H0(C, Ex) must be injective, because any kernel would yield an H such
that ψx(H ⊗W ) = 0. Similarly, for all H ⊂ V , we must have:

(∗) dim(H)

dim(ψx(H ⊗W ))
≤ P (n)

P (m)

Suppose Ex were not a bundle or not semistable. Then by Lemma 5.6(b),

we could find a quotient bundle Ex → G so that h0(C,G(n))

rk(G)
< P (n)

r
. Let H be

the kernel of the map V → H0(C,G(n)) for such a quotient, and let Fx,H be
the image of H in Ex. If Fx,H is torsion, then there is a universal bound on

its length, say K, and we can choose m so that P (n)
P (m)

< 1
K

violating (∗).
Otherwise, by the arithmetic of Lemma 4.0, we have:

(∗∗) dim(H)

rank(Fx,H)
>
P (n)

r
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where the rank of Fx,H is the generic rank, which is the coefficient of m in
χ(C,Fx,H(m)). Since χ(C,Fx,H(m)) = dim(ψx(H ⊗ W )) (see Step 1) we
get a contradiction to (∗), perhaps after boosting m again, from the fact
that there is a uniform upper bound on the constant terms of the Hilbert
polynomials of the Fx,H . So Ex is semistable. Finally, since Ex is semistable,
the map V → H0(C, Ex(n)), which we already saw was injective, must be an
isomorphism by Lemma 5.6(a).

Step 3: For sufficiently large m

(a) x ∈ XS(m) ⇐⇒ x ∈ XSS(m) and Ex is stable.

(b) For any x ∈ XSS(m), the closed orbit O(x̃′) ⊂ O(x̃) corresponds to
an Ex′ that is isomorphic to the associated graded of Ex.

Proof of Step 3: (a) is the same argument as Steps 1 and 2. For (b), if
x ∈ XSS(m)−XS(m), let F ⊂ Ex be a proper subbundle of the same slope,
and let H ⊂ V be the kernel of the map V → H0(C,G(n)), where G = Ex/F .
Consider the induced extension:

(†) : 0→ F → Ex → G→ 0

of vector bundles of the same slope.
If we take e1, ..., en spanning H, extend to a basis of V , and consider

the 1-PS subgroup λ = diag{tn−N , ..., tn−N , tn, ..., tn}, then λ acts on the
extension class of † in H1(C,G∗ ⊗ F ) by multiplication by tN , taking it to
the split extension in the limit as t→ 0. We can repeat the process until we
get to the associated graded of Ex. Since the associated graded is uniquely
determined by Schur’s Lemma, and there must be some closed orbit in the
closure of the orbit of Ex, this must be the one!

We have proved that for large m (and arbitrary (r, d)!), the GIT quotient:

G(V ⊗W,M) ⊃ Quot(V ⊗OC(−n), P (m))−
f
−> MC(r, d)

has the following properties:

(i) MC(r, d) is a projective scheme

(ii) The points of MC(r, d) correspond to associated gradeds of semistable
vector bundles of rank r and degree d.

The MC(r, d) are independent of the choice of (large enough) m because they
are all categorical quotients of the same open subscheme XSS(m)!
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Now take any vector bundle E on S×C and consider the sheaf πS∗(E(n)),
where E(n) = E ⊗ π∗COC(n). If E is a family of semi-stable bundles of rank
r and degree d (and n > 2g − 1 − d

r
), then πS∗(E(n)) is locally free of rank

P (n) and the natural map:

π∗SπS∗(E(n))⊗ π∗COC(−n)→ E

is a surjective map of vector bundles. Locally (on S) we may trivialize
πS∗(E(n)) each trivialization determines Ui → Quot(V ⊗ OC(−n), P (m))
which do not patch as maps to the Quot scheme, but do patch to:

φ : S →MC(r, d)

So to prove that MC(r, d) represents the functor, we need only to find a
universal vector bundle U on C×MC(r, d) with the property that any vector
bundle E as above satisfies E ∼ (φ, 1)∗U . We will use the following:

(Descent) Lemma 5.7: Given a linearized G-action on (X,L) and a vector
bundle F on XSS(L) with a G-action, then F descends to the GIT quotient:

f : XSS(L)→ XG

if and only if for each closed orbit O(x̃), the stabilizer Gx ⊂ G also stabilizes
the fiber Fx of F at x ∈ XSS(L).

Proof (Kempf): If F descends, then by definition, F = f
∗
(F ) is the

pull-back of the descended bundle F , so Gx acts trivially on the fibers Fx.
To prove the converse, it suffices to find, for each x′ ∈ XSS(L), an affine

neighborhood V ′ of y := f(x′) ∈ XG and a trivialization of F |
f
−1

(V ′)
by G-

invariant sections. Given x ∈ f−1(y) with closed O(x̃), there are r = rk(F )
G-invariant sections of the restriction F |O(x) which trivialize F along the
orbit. Indeed, since we assumed that Gx acts trivially on Fx, we can translate
a basis e1, ..., er ∈ Fx by G to obtain the desired sections Ge1, ..., Ger.

Let y ∈ V = D(h)G for a homogeneous, invariant h in the homogeneous

coordinate ring of X. Then f
−1

(V ) = D(h) ⊂ XSS(L) is also affine and,
as in projective GIT, the map D(h) → D(h)G is the affine GIT quotient. I
claim that there is a Reynolds operator E : H0(D(h), F ) → H0(D(h), F )G.
To see this, it suffices to show that G acts rationally on H0(D(h), F )).
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But if we choose an open affine U ⊂ D(h) on which F trivializes, then
an s ∈ H0(U, F ) gives rise to a regular function φ : G × U → Cr defined
by (g, x) 7→ gs(g−1x). Then if G = Spec(A) and U = Spec(B), we have

φ =
∑
ai⊗~bi, where ai ∈ A and~bi : U → Cr, and as before, Gs|U is contained

in the span, W , of the ~bi. Since the restriction of sections from D(h) to U is
injective, we prove rationality by intersecting W with H0(D(h), F ).

Now take the sections Ge1, ..., Ger spanning F |O(x) and extend them to
sections s1, ..., sr of F |D(h), which is possible since D(h) is affine. Apply
the Reynolds operator to get invariant sections E(s1), ..., E(sr), which still
restrict to Ge1, ..., Ger on O(x) (by property (i) of the Reynolds operator).
Finally, consider the closed invariant subset Z ⊂ D(h) where E(s1), ..., E(sr)
fail to span F . The image φ(Z) ⊂ D(h)G is closed and does not contain
f(x′), so we can shrink V = D(h) to a smaller open neighborhood x′ ∈ V ′
for which E(s1), ..., E(sr) do span, finishing the proof.

Now suppose (r, d) are coprime and consider the universal quotient:

V ⊗OC×XSS
(−n)→ E

on C×XSS ⊂ C×Quot(V ⊗OC(−n), P (m)). It is a consequence of flatness
that E is a vector bundle of relative rank r and degree d over XSS, and E is
an SL(V )-bundle by virtue of the fact that the Quot scheme represents the
functor. That is, the action on E is obtained by pulling back the universal
quotient under the action of SL(V ) on C × XSS. Since (r, d) are coprime,
each of the bundles Ex is stable (there is no smaller r′ with d′

r′
= d

r
) and since

Aut(Ex) = C∗, it follows that each stabilizer SL(V )x = SL(V)∩C∗ ∼= µP (n) is
the group of P (n)-th roots of unity. Again, since (r, d) are coprime, it follows
that P (n) = nr + d− r(g − 1) and r are coprime, so we can solve(!)

1 + ar = bP (n)

and it follows that the action of the stabilizers SL(V )x on E ⊗ (∧rE)⊗a is
trivial, and this bundle, at least, descends.

In the rank r = 1 case, take b = 1 and a = P (n)− 1, and this gives us a
bundle Ln on C ×Picd(C) for the Picard scheme Picd(C) = MC(1, d), which
has the property that (Ln)x is the P (n)th tensor power of the line bundle
associated to x ∈ MC(1, d). But we may descend for two consecutive values
of n, which gives consecutive values of P (n) = n + d − (g − 1) and we get
L := Ln+1 ⊗ L∗n which then has the desired universal property.
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In the arbitrary rank case, we have the “determinant” morphism:

XSS →MC(r, d)
det→MC(1, d)

coming from the family of line bundles ∧rE on C×XSS which factors through
MC(r, d) because it is a categorical quotient! Thus we may take the vector
bundle En on C ×MC(r, d) descended from E ⊗ (∧rE)⊗a and “tensor back”
by ((1, det)∗L)⊗−a to obtain U which has the desired universal property.

Claim: Each MC(r, d) is irreducible.

Proof: First of all, notice that there are isomorphisms:

· · · ⊗OC(1)→ MC(r, d)
⊗OC(1)→ MC(r, d+ r)

⊗OC(1)→ · · ·

which, in case (r, d) are coprime are obtained by taking the tensor product
U⊗π∗COC(1) (and in the non-relatively prime case are obtained by considering
E ⊗ π∗COC(1) on the Quot scheme and using the categorical quotient). Thus
we may assume that d > r(2g − 1) so all bundles are generated by sections.

When r = 1, this gives us a surjective map (in fact a projective bundle)

ud : Symd(C)→MC(1, d); D 7→ OC(D)

defined rigorously by using the “universal” Cartier divisor D ⊂ C×Symd(C)
and using it to construct the familyOC×Symd(C)(D) of line bundles. Evidently,

Symd(C) is irreducible, as it is the quotient of Cd by the permutation group.

In rank r, a choice of r + 1 general sections of a bundle E of rank r and
degree d gives a surjection Or+1

C → E with kernel (∧rE)∗. Dually, this means
we can exhibit E∗ as the kernel of a map:

0→ E∗ → Or+1
C → L→ 0

where L = (∧rE) (and then dualize to get E). It turns out that a general
choice of r+ 1 sections of a line bundle L of degree d has a semi-stable E as
its kernel, and this gives a surjective morphism:

G(r + 1, π∗L) ⊂ U →MC(r, d)

from an open subset U of the Grassmann bundle over MC(1, d) to MC(r, d).
Since MC(1, d) is irreducible, it then follows that MC(r, d) is irreducible too.
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For smoothness and the dimension count, we will use deformation theory.
Given a stable bundle E of rank r and degree d, the Zariski tangent space is
the space of (equivalence classes of) vector bundles Eε on C×Spec(k[ε]) with
the property that Eε|C ∼= E. We may trivialize E on an open cover ∪Ui = C
with intersections Uij = Ui ∩ Uj, and then E is determined by transition
functions:

Gij ∈ GL(OC(Uij))

satisfying the cocycle condition:

GjkGij = Gik

on triple intersections Uijk. An extension of E is given by an extension of
the transition functions:

Gij + εHij ∈ GL(OC(Uij)[ε])

(the invertibility puts no constraint on the matrix Hij) satisfying:

(Gjk + εHjk)(Gij + εHij) = Gik + εHik

or the original cocycle condition together with:

HjkGij +GjkHij = Hik

on triple intersections Uijk. But if we regard the Hij as sections of the
(trivialized!) bundle End(E), then this is precisely the cocycle condition to
define an element of:

H1(C,End(E))

(as the Gij transition the Hij to allow us to compare them on Uik). And
coboundaries are cocycles that give trivial deformations of E, so this is indeed
the tangent space. Similarly, one checks that the obstruction space is:

H2(C,End(E)) = 0

Thus on a curve C, there is no obstruction space, so MC(r, d) is smooth, and:

dim(MC(r, d)) = dim(H1(C,End(E))) = χ(C,End(E)) + 1 = r2(g − 1) + 1

by Riemann-Roch (and Schur: h0(C,End(E)) = 1 since E is stable).
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Finally, I want to use descent to describe:

The Determinantal Line Bundle: Going back to the semi-stable points
of the Quot scheme XSS ⊂ Quot(V ⊗ OC(−n), P (m)) let’s assume that, in
fact, far from being relatively prime, we actually have:

d = r(g − 1)

Proposition 4.5: There is a scheme structure on the subset

Θ := {E | H0(C,E) 6= 0} ⊂ Mr,r(g−1)(C)

making it an ample Cartier divisor.

Proof: Let n be chosen as in Lemma 4.4, letXSS ⊂ QuotP (V⊗OC(−D)/C)
be the semistable locus, where P (m) = mr, and D =

∑n
i=1 pi is a divisor on

C consisting of distinct points. If U is the universal quotient on C × XSS,
then pushing down the exact sequence:

0→ U → U(D)→ ⊕ni=1U(D)pi → 0

yields the sequence:

0→ πXSS
∗
U → πXSS

∗
U(D)

f→ ⊕ni=1U(D)pi → R1πXSS
∗
U → 0

where the middle two sheaves are both locally free of rank N = rn. Moreover,
since there exist semistable bundles E of degree r(g− 1) with H1(C,E) = 0,
(e.g. E = ⊕rL where H1(C,L) = 0), the first sheaf vanishes! Finally, the
map f is G-invariant, so f descends, and ∧N(f), a (nonzero) section of the
line bundle L := Hom(∧NπXSS

∗
U(D),⊗ni=1∧rU(D)pi) descends to a section s

which vanishes precisely on Θ. If m > M is fixed, then OX(1) := ∧mrπ∗U(m)
is the linearization used in Theorem 4VB to define XSS. In particular, some
power of O(1) descends to an ample line bundle onMr,d(C). We claim that
there are integers a and b such that La and O(b) differ by the pullback of a
line bundle from Picd(C). This implies that Θ is ample.

But ∧NπXSS
∗
U(D) is trivial, naturally isomorphic to ∧NV ⊗ O, and the

difference between ∧crπXSS
∗
U(c) and ∧(c+1)rπXSS

∗
U(c+ 1) is a translate of the

bundle ∧rUp by the pullback of a line bundle from Picd(C) (p ∈ C is an
arbitrary point). The result is therefore immediate, since up to translation,
L and O(1) are powers of the same line bundle.
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