5. **Vector Bundles on a Smooth Curve.** We will construct projective moduli spaces for semistable vector bundles on a smooth projective curve \(C \) by applying GIT to a suitable Grothendieck Quot scheme. The construction we present here is due to Carlos Simpson.

Let \(E \) be a vector bundle on a smooth projective curve \(C \) of genus \(g \).

Definition:
(a) The **slope** \(\mu(E) = \deg(E)/\rk(E) \).
(b) \(E \) is **stable** if \(\mu(F) < \mu(E) \) for all proper subbundles \(F \subset E \).
(c) \(E \) is **semistable** if \(\mu(F) \leq \mu(E) \) for all \(F \subset E \).

Lemma 5.1: If \(0 \to F \to E \to G \to 0 \) is an exact sequence of vector bundles, then \(\mu(F) \geq \mu(E) \) (resp. \(> \)) if and only if \(\mu(E) \geq \mu(G) \) (resp. \(> \)).

Proof: Arithmetic! If \(a,b,c,d > 0 \), then \(\frac{a}{c} > \frac{a+b}{c+d} \) if and only if \(\frac{b}{d} < \frac{a+b}{c+d} \).

Examples:
(i) Every vector bundle on \(\mathbb{P}^1 \) splits as a sum of line bundles, so only the line bundles \(\mathcal{O}_{\mathbb{P}^1}(d) \) are stable, and only \(\mathcal{O}_{\mathbb{P}^1}(d)^{\oplus n} \) are semistable.
(ii) \(E \) is (semi-)stable iff the dual bundle \(E^* \) is (semi-)stable.
(iii) \(E \) is (semi-)stable iff \(E \otimes L \) is (semi-)stable for all line bundles \(L \).
(iv) If \(E \) is semistable of rank \(r \) and degree \(d \) and:
 (a) \(d < 0 \), then \(\mathcal{H}^0(C, E) = 0 \).
 (b) \(d > r(2g - 2) \), then \(\mathcal{H}^1(C, E) = 0 \).
 (c) \(d > r(2g - 1) \), then \(E \) is generated by its global sections.

(Schur’s) Lemma 5.2:
(a) If \(E \) and \(F \) are stable with the same slope, then any map \(f : E \to F \) is either 0 or an isomorphism.
(b) The only automorphism of a stable bundle \(E \) is scalar multiplication.
(c) (Jordan decomposition) If \(E \) is semistable, there is a filtration:

\[
0 = E_0 \subset E_1 \subset ... \subset E_n = E
\]

such that \(F_i := E_i/E_{i-1} \) is a stable vector bundle and each \(\mu(F_i) = \mu(E) \).

The filtration is not canonical, in general, but the **associated graded** bundle \(\oplus_{i=1}^n F_i \) is independent of the choice of filtration.
Proof: If \(f : E \to F \) is not zero, then both \(\ker(f) \) and \(E/\ker(f) \) are bundles. If \(f \) isn’t injective, then the stability of \(E \) implies \(\mu(\ker(f)) < \mu(E) \) and by Lemma 5.1, \(\mu(E/\ker(f)) > \mu(E) = \mu(F) \), contradicting the stability of \(F \). So \(f \) is injective, and surjective by the stability of \(F \). This gives (a).

If \(\alpha : E \to E \) is an automorphism, let \(\lambda_x \) be an eigenvalue of the restriction of \(\alpha \) to the fiber of \(E \) over \(x \in C \). Then \(\alpha - \lambda_x(\text{id}) \) drops rank at \(x \), so it is not an isomorphism, and must be zero by (a) and we have (b). Finally, (c) follows from (a) by the usual Jordan-H"older decomposition.

Harder-Narasimhan Lemma 5.3: If \(E \) is an any vector bundle on \(C \), then there is a filtration:

\[
0 = E_0 \subset E_1 \subset \ldots \subset E_n = E
\]

such that \(F_i := E_{i+1}/E_i \) are semistable vector bundles, with \(\mu(F_i) > \mu(F_{i+1}) \).

This filtration is uniquely determined by the property that if \(F \subset E \) is any sub-bundle with \(\mu(F) \geq \mu(E_i) \), then \(F \subset E_i \).

Proof: Let \(S = \{ a \mid a < \mu(E) \text{ and } a = \mu(Q) \text{ for some quotient } E \to Q \} \).

We claim first that \(S \) is a finite set. Indeed, let \(D \) be a divisor of large enough degree so that \(E(D) \) is generated by its sections. Then any \(Q(D) \) is also generated by its sections, so \(\deg(Q(D)) \geq 0 \) and \(\mu(Q) \geq -\deg(D) \). So the elements of \(S \) are bounded below (and above!) and since the denominators are bounded above by \(r \), it follows that \(S \) is finite.

Finiteness of \(S \) implies that the set of slopes of sub-bundles \(F \subset E \) is bounded from above. Let \(E_1 \subset E \) be the sub-bundle of maximal rank among those of maximal slope. Then \(E_1 \) is semi-stable and \(E/E_1 \) is a vector bundle. If \(F \subset E \) is another sub-bundle with \(\mu(F) = \mu(E_1) \), then the span of \(F \) and \(E_1 \) is yet another sub-bundle of the same slope (since the kernel of the map from \(F \oplus E_1 \) to the span must have the same slope). Since \(E_1 \) was of maximal rank, it follows that \(F \subset E_1 \) which then has the desired property.

Now suppose inductively that the lemma holds for \(F = E/E_1 \). We may use the Harder-Narasimhan filtration of \(F \):

\[
0 = F_0 \subset F_1 \subset \ldots \subset F_{n-1} = F = E/E_1
\]

to uniquely define \(E_{i+1} \) by the condition that \(E_{i+1}/E_1 = F_i \). And it follows that this filtration has the desired property.
Thus every vector bundle on C is an extension of stable vector bundles, which are the “indecomposable” objects. They also have the smallest possible group of automorphisms, namely \mathbb{C}^*, though there are vector bundles with this automorphism group (called simple vector bundles) which are not stable.

The following theorem is due to Narasimhan and Seshadri:

Theorem 5.4: For each pair (r, d) of coprime positive integers, the functor:

- **Obj**: schemes S with an equivalence class of vector bundles E on $C \times S$ with the property that each E_s is stable, of rank r and degree d
 (and $E \sim F \iff E \cong F \otimes \pi^* \Lambda$ for some line bundle Λ on S)

- **Mor**: morphisms $\phi : S \to S'$ such that $(\phi, \text{id})^* E' \sim E$

is represented by a projective scheme $M_C(r, d)$ which is irreducible and smooth, of dimension $r^2(g-1) + 1$.

Proof: We need two key lemmas, the first solving a GIT problem, and the second having to do with the boundedness of families of sheaves on C.

(GIT) Lemma 5.5: If V and W are vector spaces and M is an integer, let

$$G(V \otimes W, M)$$

be the Grassmannian of M-dimensional quotients of $V \otimes W$. Then a point $\psi \in G(V \otimes W, M)$ is semistable (resp. stable) with respect to the natural line bundle and linearization of $\text{SL}(V)$ if and only if

$$\frac{\dim(H)}{\dim(V)} \leq \frac{\dim(\psi(H \otimes W))}{M} \quad (\text{resp. } <)$$

for every proper subspace $H \subset V$.

Proof: Let $N = \dim(V)$ and $R = \dim(W)$ with a fixed basis w_1, \ldots, w_R. An point $\psi \in G(V \otimes W, M)$ lifts to $\bar{\psi} = \wedge^M \psi \in \wedge^M(V \otimes W)^*$ in the natural linearization. Given any basis e_1, \ldots, e_N of V and dual basis x_1, \ldots, x_N, we’ll call $e_{i_1} \otimes w_{j_1} \wedge \ldots \wedge e_{i_M} \otimes w_{j_M}$ the induced basis of Plücker vectors. Thus the coordinates of $\bar{\psi}$ are the values:

$$\wedge^M \psi(e_{i_1} \otimes w_{j_1} \wedge \ldots \wedge e_{i_M} \otimes w_{j_M}) = \psi(e_{i_1} \otimes w_{j_1}) \wedge \ldots \wedge \psi(e_{i_M} \otimes w_{j_M}) \in \mathbb{C}$$

which are zero if and only if the $\psi(e_{i_k} \otimes w_{j_l})$ are not linearly independent.
If $\lambda = \text{diag}\{t^1, \ldots, t^N\}$ is a 1-PS of $\text{SL}(V)$ and x_1, \ldots, x_N is the associated (dual) basis, we’ll say the weight of the Plücker vector above is $\sum_{j=1}^{M} r_{ij}$. Then ψ is λ-unstable for this λ if and only if $\wedge^M \psi$ vanishes on every Plücker vector of nonpositive weight.

Suppose $H \subset V$ has dimension n, $\dim(\psi(H \otimes W)) = m$ and $\frac{n}{N} > \frac{m}{M}$. Let e_1, \ldots, e_n be a basis of H, extended to a basis e_1, \ldots, e_N of V and let $\lambda = \text{diag}\{t^{n-N}, \ldots, t^{n-N}, t^n, \ldots, t^n\}$ for the dual basis. For each Plücker vector, if $\wedge^M \psi(e_{i_1} \otimes w_{j_1} \wedge \ldots \wedge e_{i_M} \otimes w_{j_M}) \neq 0$, then $\psi(e_{i_1} \otimes w_1), \ldots, \psi(e_{i_M} \otimes w_M)$ must be linearly independent, so the e_{ij} must involve at most m of the e_1, \ldots, e_n vectors, thus its weight must be at least $m(n - N) + (M - m)n$. But $Mn - mN > 0$ by assumption, so $\wedge^M \psi$ is λ-unstable for this λ.

Conversely, let λ be any 1-PS, diagonalized as $\lambda = \text{diag}\{t^1, \ldots, t^n\}$ for a basis x_1, \ldots, x_N. If ψ is λ-unstable, let H_n be the span of e_1, \ldots, e_n, and let $m_n = \dim(\psi(H_n \otimes W))$. Then λ-instability tells us:

\[
(*) \quad r_1 m_1 + r_2 (m_2 - m_1) + \ldots + r_N (M - m_{N-1}) > 0
\]

because it is the minimal weight of a Plücker vector on which $\wedge^M \psi$ is nonzero.

I claim that for some n, the “averaged” weights also satisfy:

\[
\frac{1}{n} (r_1 + \ldots + r_n) m_n + \frac{1}{N - n} (r_{n+1} + \ldots + r_N) (M - m_n) > 0
\]

It then follows that $\frac{n}{N} > \frac{m_n}{M}$ holds for $H = H_n$. To see the claim, notice first that if $m_{i+1} - m_i \leq m_i - m_{i-1}$, then we may combine r_i and r_{i+1}, replacing them with their average $\frac{r_i + r_{i+1}}{2}$ without decreasing $(*)$. The averaged weights are the same as the original, so we may assume the sequence of differences is increasing: $\Delta_1 := m_1 < \Delta_2 := m_2 - m_1 < \ldots < \Delta_N := m_N - m_{N-1}$. Now consider the linear function:

\[
L(t_1, t_2, \ldots, t_N) = r_1 t_1 + \ldots + r_N t_N
\]

which by assumption satisfies $L(\Delta_1, \ldots, \Delta_N) > 0$, and consider its values at the points:

\[
p_n := \left(\frac{\sum_{i=1}^{n} \Delta_i}{n}, \ldots, \frac{\sum_{i=n+1}^{N} \Delta_i}{n - n}, \frac{\sum_{i=n+1}^{N} \Delta_i}{N - n}, \ldots, \frac{\sum_{i=n+1}^{N} \Delta_i}{N - n}\right) \in \mathbb{R}^N
\]

These points are linearly independent and $L(p_N) = 0$ (the r_i sum to zero). Thus they span the hyperplane $\{ \sum t_i = \sum \Delta_i \} \subset \mathbb{R}^N$ and in particular, $(\Delta_1, \ldots, \Delta_N) = \sum_{i=1}^{N-1} y_i p_i - y_N p_N$ for positive values y_i, so some $L(p_i) > 0$. 4
Thus, we’ve shown that $\frac{n}{N} > \frac{m}{M}$ if and only if ψ is λ-unstable for some λ. By the numerical criterion, this proves the “semi-stable” part of the lemma, and the stable part is proved by replacing each “>” by a “≥.”

Lemma 5.6: Let $p \in C$, and $\mathcal{O}_C(1) := \mathcal{O}_C(p)$. If $n > 2g - 1 - \frac{d}{r}$ then:

(a) If E is semistable of rank r and degree d, then $H^1(C, E(n)) = 0$, $E(n)$ is generated by global sections and for all subbundles $F \subset E$:

$$\frac{h^0(C, F(n))}{\text{rank}(F)} \leq \frac{h^0(C, E(n))}{\text{rank}(E)}$$

with equality if and only if F is semistable, $h^1(C, F(n)) = 0$ and for all m:

$$\frac{\chi(C, F(m))}{\text{rank}(F)} = \frac{\chi(C, E(m))}{\text{rank}(E)}$$

(b) If \mathcal{E} is any coherent sheaf of the same Hilbert polynomial $\chi(C, \mathcal{E}(n)) = P(m) = rm + d - r(g - 1)$ as a vector bundle of rank r and degree d, and if every vector bundle quotient $\mathcal{E} \to G$ satisfies:

$$\frac{h^0(C, G(n))}{\text{rank}(G)} \geq \frac{P(n)}{r},$$

then \mathcal{E} is itself a semistable vector bundle of rank r and degree d.

Proof: The key point is the following. If E is a semistable bundle of rank r and if $h^1(C, E) \neq 0$, then $h^0(C, E) \leq rg$ independent of the degree of E. This is well-known for line bundles, since every L with $h^1(C, L) \neq 0$ is a subsheaf of the canonical line bundle and $h^0(C, \omega_C) = g$. But here’s a proof that generalizes. If $h^1(C, L) \neq 0$, then $\deg(L) \leq 2g - 2$. If $h^0(C, L) \geq g$, then there is a section $s \in H^0(C, L)$ vanishing at any $p_1, ..., p_{g-1} \in C$. If the p_i are “general,” then $h^0(C, \mathcal{O}_C(\sum p_i)) = 1$ and from:

$$0 \to \mathcal{O}_C(\sum p_i) \to L \to \tau \to 0$$

and $\deg(\tau) \leq g - 1$ it follows that $h^0(C, L) \leq 1 + h^0(C, \tau) \leq g$.

If E is semistable of rank r and $h^1(C, E) \neq 0$, then by Example (iv) we have $\deg(E) \leq r(2g - 2)$ and $\deg(F) \leq r'(2g - 2)$ for any subbundle $F \subset E$ of rank r'. If $h^0(C, E) \geq rg$, then there is a section $s \in H^0(C, E)$ vanishing at any $g - 1$ points, and then we get $\mathcal{O}_C(\sum p_i) \subset E$ spanning a line bundle $L \subset E$ of degree $\leq 2g - 2$ satisfying $h^0(C, L) \leq g$ as above.
If \(h^0(C, E) \geq rg \), then \(h^0(C, E/L) \geq (r - 1)g \) and we can find a section \(s' \in H^0(C, E/L) \) which again can be chosen to vanish at \(g - 1 \) general points. The two sections \(s, s' \) will span a sub-bundle \(F \subset E \) of degree \(\leq 2(2g - 2) \) which then has at most \(2 + 2(g - 1) = 2g \) sections from the exact sequence:

\[
0 \to \mathcal{O}_C(\sum p_i) \oplus \mathcal{O}_C(\sum p'_i) \to F \to \tau \to 0
\]

and then one considers sections of \(E/F \), etc.

We already saw that the first part of (a) is satisfied in Example (iv). Notice that:

\[
\chi(C, E(n)) = \frac{P(n)}{r} = n + \frac{d}{r} - (g - 1)
\]

Thus any semistable bundle \(F \) of rank \(r' \leq r \) and slope \(\mu \leq \frac{d}{r} \) must satisfy \(h^0(C, F(n)) = \chi(C, F(n)) \leq \frac{d}{r} P(n) \), or else \(h^0(C, F(n)) \leq r'g < \frac{d}{r} P(n) \) by the key point above (and the lower bound \(n > 2g - 1 - \frac{d}{r} \)).

If \(F \subset E \) and \(E \) is semistable, then every \(F_i \) in the Harder-Narasimhan filtration of \(F \) has slope at most \(\frac{d}{r} \), so each subquotient \(F_i \) satisfies

\[
\frac{h^0(C, F_i(n))}{\text{rk}(F_i)} \leq \frac{P(n)}{r}
\]

and by Lemma 5.1, we have the same inequality for \(F \). If equality holds, then it must hold for every \(F_i \), and we conclude that every \(F_i \) has slope exactly \(\frac{d}{r} \), so \(F \) is semistable, and \(\chi(C, F_i(n)) = \frac{P(n)}{r \text{rk}(F)} \) for all \(m \). This proves (a).

If \(E \) is the sheaf in (b), let \(T \subset E \) be the torsion subsheaf, and let \(G \) be the (semistable) quotient of smallest rank in the Harder-Narasimhan filtration of \(E/T \). Since \(\mu(G) \leq \mu(E/T) \leq \frac{d}{r} \), it follows as above that:

\[
\frac{h^0(C, G(n))}{\text{rk}(G)} \leq \frac{P(n)}{r}
\]

with equality if and only if \(T = 0 \) and \(\mu(G) = \mu(E) \). But this means \(E = G! \)

We are ready for the proof of Theorem 5.4 now.

Let \(P(m) = rm + d - r(g - 1) \) be the Hilbert polynomial of a bundle of rank \(r \) and degree \(d \) as in Lemma 5.6, and for fixed \(n > 2g - 1 - \frac{d}{r} \), consider the Quot scheme

\[
\text{Quot}(V \otimes \mathcal{O}_C(-n), P(m))
\]

where \(V \) is a vector space of rank \(P(n) \) (with \(\text{SL}(V) \) action).
If E is any semistable bundle of rank r and degree d, then as we have already remarked, $E(n)$ is generated by global sections and $H^1(C, E(n)) = 0$, so $h^0(C, E(n)) = P(n)$ and the global section map $V \cong H^0(C, E(n)) \to E(n)$ twists to give a point $V \otimes \mathcal{O}_C(-n) \to E$ of the Quot scheme. Recall that the Quot scheme embeds in Grassmannians:

$$
\iota_m : \text{Quot}(V \otimes \mathcal{O}_C(-n), P(m)) \hookrightarrow G(V \otimes W, M)
$$

for each $M = P(m)$ and sufficiently large m, and $W = H^0(C, \mathcal{O}_C(m-n))$.

We will consider the GIT quotient of the Quot scheme for the action of $SL(V)$ induced from the Grassmannian (and linearized as in Lemma 5.5). For large enough m, the two notions of vector bundle (semi-)stability and GIT (semi-)stability will coincide. When n, d are coprime, semi-stability equals stability, and the GIT quotient will represent the functor. Deformation theory will then show that the quotient is smooth, of the indicated dimension.

If $x \in \text{Quot}(V \otimes \mathcal{O}_C(-n), P(m))$, let $q_x : V \otimes \mathcal{O}_C(-n) \to \mathcal{E}_x$ be the corresponding quotient. Such a quotient induces a map $V \to H^0(C, \mathcal{E}_x(n))$ and for each (large enough) m, let $\psi_x : V \otimes W \to H^0(C, \mathcal{E}_x(m))$ be the image point in the Grassmannian. Let $X_U(m), X_{SS}(m)$ and $X_S(m)$ be the loci of unstable, semistable and stable points for this embedding.

Step 1: For large enough m (independent of x), if

(i) \mathcal{E}_x is a semistable vector bundle and

(ii) $V \to H^0(C, \mathcal{E}_x(n))$ is an isomorphism, then $x \in X_{SS}(m)$.

Proof: If $x \in X_U(m)$, then by Lemma 5.5, there is an $H \subset V$ so that:

$$(*) \quad \frac{\dim(H)}{P(n)} > \frac{\dim(\psi_x(H \otimes W))}{P(m)}
$$

and we need to show that the existence of such an H violates (i) or (ii).

For each $H \subset V$, let $\mathcal{F}_{x,H} \subset \mathcal{E}_x$ be the subsheaf generated by $H \otimes \mathcal{O}_C(-n)$. Assuming (ii), we see that $H \cong H^0(C, \mathcal{F}_{x,H}(n))$. Consider:

$$
0 \to \mathcal{K}_{x,H} \to H \otimes \mathcal{O}_C(-n) \to \mathcal{F}_{x,H} \to 0
$$

and choose m_0 so that $m \geq m_0$ implies that $H^1(C, \mathcal{K}_{x,H}(m)) = 0$ and $H^1(C, \mathcal{F}_{x,H}(m)) = 0$, for all $H \subset V$ and all x in the Quot scheme. Then $\psi_x(H \otimes W) = H^0(C, \mathcal{F}_{x,H}(m))$ is of dimension $\chi(C, \mathcal{F}_{x,H}(m))$.

7
Thus if \((\ast)\) holds, then:

\[
\frac{\dim(H^0(C, F_{x,H}(n)))}{P(n)} > \frac{\chi(C, F_{x,H}(m))}{P(m)}.
\]

On the other hand, if we assume (i), then Lemma 5.6 (a) gives us:

\[
\frac{\dim(H^0(C, F_{x,H}(n)))}{P(n)} < \frac{\rank(F_{x,H})}{r} \tag{equality would force equality in the previous formula}.
\]

But \(\chi(C, F_{x,H}(m)) = r'm + d' - r'(g - 1)\) for \(r' = \rank(F_{x,H})\) and \(d' = \deg(F_{x,H})\), so we are getting:

\[
\frac{r'}{r} > \frac{\dim(H^0(C, F_{x,H}(n)))}{P(n)} > \frac{r'(m + d') - (g - 1)}{r(m + d') - (g - 1)}
\]

There are only finitely many \(d'\) and \(r'\), so since the right side approaches the left as \(m \to \infty\), we obtain a contradiction when \(m\) is sufficiently large.

Step 2: After possibly increasing \(m\) again, if \(x \in X_{SS}(m)\) then:

(a) The map \(V \to H^0(C, E_x(n))\) is an isomorphism and

(b) The quotient \(E_x\) is a semistable vector bundle.

Proof of Step 2: By Lemma 5.5, if \(x \in X_{SS}(m)\) (for any \(m\)), then \(V \to H^0(C, E_x)\) must be injective, because any kernel would yield an \(H\) such that \(\psi_x(H \otimes W) = 0\). Similarly, for all \(H \subset V\), we must have:

\[
(\ast) \quad \frac{\dim(H)}{\dim(\psi_x(H \otimes W))} \leq \frac{P(n)}{P(m)}
\]

Suppose \(E_x\) were not a bundle or not semistable. Then by Lemma 5.6(b), we could find a quotient bundle \(E_x \to G\) so that \(\frac{h^0(C, G(n))}{\rank(G)} < \frac{P(n)}{r}\). Let \(H\) be the kernel of the map \(V \to H^0(C, G(n))\) for such a quotient, and let \(F_{x,H}\) be the image of \(H\) in \(E_x\). If \(F_{x,H}\) is torsion, then there is a universal bound on its length, say \(K\), and we can choose \(m\) so that \(\frac{P(n)}{P(m)} < \frac{1}{K}\), violating \((\ast)\).

Otherwise, by the arithmetic of Lemma 4.0, we have:

\[
(**) \quad \frac{\dim(H)}{\rank(F_{x,H})} > \frac{P(n)}{r}
\]
where the rank of $F_{x,H}$ is the generic rank, which is the coefficient of m in $\chi(C, F_{x,H}(m))$. Since $\chi(C, F_{x,H}(m)) = \dim(\psi_x(H \otimes W))$ (see Step 1) we get a contradiction to (*), perhaps after boosting m again, from the fact that there is a uniform upper bound on the constant terms of the Hilbert polynomials of the $F_{x,H}$. So E_x is semistable. Finally, since E_x is semistable, the map $V \to H^0(C, E_x(n))$, which we already saw was injective, must be an isomorphism by Lemma 5.6(a).

Step 3: For sufficiently large m

(a) $x \in X_S(m) \iff x \in X_{SS}(m)$ and E_x is stable.

(b) For any $x \in X_{SS}(m)$, the closed orbit $O(\bar{x}') \subset \bar{O}(\bar{x})$ corresponds to an $E_{x'}$ that is isomorphic to the associated graded of E_x.

Proof of Step 3: (a) is the same argument as Steps 1 and 2. For (b), if $x \in X_{SS}(m) - X_S(m)$, let $F \subset E_x$ be a proper subbundle of the same slope, and let $H \subset V$ be the kernel of the map $V \to H^0(C, G(n))$, where $G = E_x/F$. Consider the induced extension:

$$\dagger : 0 \to F \to E_x \to G \to 0$$

of vector bundles of the same slope.

If we take $e_1, ..., e_n$ spanning H, extend to a basis of V, and consider the 1-PS subgroup $\lambda = \text{diag}\{t^{n-N}, ..., t^{n-N}, t^n, ..., t^n\}$, then λ acts on the extension class of \dagger in $H^1(C, G^* \otimes F)$ by multiplication by t^N, taking it to the split extension in the limit as $t \to 0$. We can repeat the process until we get to the associated graded of E_x. Since the associated graded is uniquely determined by Schur’s Lemma, and there must be some closed orbit in the closure of the orbit of E_x, this must be the one!

We have proved that for large m (and arbitrary (r, d)!), the GIT quotient:

$$G(V \otimes W, M) \supset \text{Quot}(V \otimes O_C(-n), P(m)) \twoheadrightarrow M_C(r, d)$$

has the following properties:

(i) $M_C(r, d)$ is a projective scheme

(ii) The points of $M_C(r, d)$ correspond to associated gradeds of semistable vector bundles of rank r and degree d.

The $M_C(r, d)$ are independent of the choice of (large enough) m because they are all categorical quotients of the same open subscheme $X_{SS}(m)$!
Now take any vector bundle E on $S \times C$ and consider the sheaf $\pi_{S*}(E(n))$, where $E(n) = E \otimes \pi_C^*O_C(n)$. If E is a family of semi-stable bundles of rank r and degree d (and $n > 2g - 1 - \frac{d}{r}$), then $\pi_{S*}(E(n))$ is locally free of rank $P(n)$ and the natural map:

$$\pi_{S*}(E(n)) \otimes \pi_C^*O_C(-n) \to E$$

is a surjective map of vector bundles. Locally (on S) we may trivialize $\pi_{S*}(E(n))$ each trivialization determines $U_i \to \text{Quot}(V \otimes O_C(-n), P(m))$ which do not patch as maps to the Quot scheme, but do patch to:

$$\phi : S \to M_C(r,d)$$

So to prove that $M_C(r,d)$ represents the functor, we need only to find a universal vector bundle U on $C \times M_C(r,d)$ with the property that any vector bundle E as above satisfies $E \sim (\phi, 1)^*U$. We will use the following:

(Descent) Lemma 5.7: Given a linearized G-action on (X, L) and a vector bundle F on $X_{SS}(L)$ with a G-action, then F descends to the GIT quotient:

$$\overline{f} : X_{SS}(L) \to X^G$$

if and only if for each closed orbit $O(\bar{x})$, the stabilizer $G_x \subset G$ also stabilizes the fiber F_x of F at $x \in X_{SS}(L)$.

Proof (Kempf): If F descends, then by definition, $F = \overline{f}^*(\overline{\mathcal{F}})$ is the pull-back of the descended bundle $\overline{\mathcal{F}}$, so G_x acts trivially on the fibers F_x.

To prove the converse, it suffices to find, for each $x' \in X_{SS}(L)$, an affine neighborhood V' of $y := \overline{f}(x') \in X^G$ and a trivialization of $F|_{\overline{f}^{-1}(V')}$ by G-invariant sections. Given $x \in \overline{f}^{-1}(y)$ with closed $O(\bar{x})$, there are $r = \text{rk}(F)$ G-invariant sections of the restriction $F|_{O(\bar{x})}$ which trivialize F along the orbit. Indeed, since we assumed that G_x acts trivially on F_x, we can translate a basis $e_1, \ldots, e_r \in F_x$ by G to obtain the desired sections Ge_1, \ldots, Ge_r.

Let $y \in V = D(h)^G$ for a homogeneous, invariant h in the homogeneous coordinate ring of X. Then $\overline{f}^{-1}(V) = D(h) \subset X_{SS}(L)$ is also affine and, as in projective GIT, the map $D(h) \to D(h)^G$ is the affine GIT quotient. I claim that there is a Reynolds operator $E : H^0(D(h), F) \to H^0(D(h), F)^G$. To see this, it suffices to show that G acts rationally on $H^0(D(h), F))$.
But if we choose an open affine $U \subset D(h)$ on which F trivializes, then an $s \in H^0(U, F)$ gives rise to a regular function $\phi : G \times U \to \mathbf{C}^r$ defined by $(g, x) \mapsto gs(g^{-1}x)$. Then if $G = \text{Spec}(A)$ and $U = \text{Spec}(B)$, we have $\phi = \sum a_i \otimes \bar{b}_i$, where $a_i \in A$ and $\bar{b}_i : U \to \mathbf{C}^r$, and as before, $G_{s|U}$ is contained in the span, W, of the \bar{b}_i. Since the restriction of sections from $D(h)$ to U is injective, we prove rationality by intersecting W with $H^0(D(h), F)$.

Now take the sections Ge_1, \ldots, Ge_r spanning $F|_{O(x)}$ and extend them to sections s_1, \ldots, s_r of $F|_{D(h)}$, which is possible since $D(h)$ is affine. Apply the Reynolds operator to get invariant sections $E(s_1), \ldots, E(s_r)$, which still restrict to Ge_1, \ldots, Ge_r on $O(x)$ (by property (i) of the Reynolds operator). Finally, consider the closed invariant subset $Z \subset D(h)$ where $E(s_1), \ldots, E(s_r)$ fail to span F. The image $\phi(Z) \subset D(h)^G$ is closed and does not contain $f(x')$, so we can shrink $V = D(h)$ to a smaller open neighborhood $x' \in V'$ for which $E(s_1), \ldots, E(s_r)$ do span, finishing the proof.

Now suppose (r, d) are coprime and consider the universal quotient:

$$V \otimes \mathcal{O}_{C \times X_{SS}}(-n) \to \mathcal{E}$$

on $C \times X_{SS} \subset C \times \text{Quot}(V \otimes \mathcal{O}_C(-n), P(m))$. It is a consequence of flatness that \mathcal{E} is a vector bundle of relative rank r and degree d over X_{SS}, and \mathcal{E} is an $\text{SL}(V)$-bundle by virtue of the fact that the Quot scheme represents the functor. That is, the action on \mathcal{E} is obtained by pulling back the universal quotient under the action of $\text{SL}(V)$ on $C \times X_{SS}$. Since (r, d) are coprime, each of the bundles \mathcal{E}_x is stable (there is no smaller r' with $\frac{d}{r'} = \frac{d}{r}$) and since $\text{Aut}(\mathcal{E}_x) = \mathbf{C}^*$, it follows that each stabilizer $\text{SL}(V)_x = \text{SL}(V) \cap \mathbf{C}^* \cong \mu_{P(n)}$ is the group of $P(n)$-th roots of unity. Again, since (r, d) are coprime, it follows that $P(n) = nr + d - r(g - 1)$ and r are coprime, so we can solve(!)

$$1 + ar = bP(n)$$

and it follows that the action of the stabilizers $\text{SL}(V)_x$ on $\mathcal{E} \otimes (\wedge^r \mathcal{E})^{\otimes a}$ is trivial, and this bundle, at least, descends.

In the rank $r = 1$ case, take $b = 1$ and $a = P(n) - 1$, and this gives us a bundle \mathcal{L}_n on $C \times \text{Pic}^d(C)$ for the Picard scheme $\text{Pic}^d(C) = M_C(1, d)$, which has the property that $(\mathcal{L}_n)_x$ is the $P(n)$th tensor power of the line bundle associated to $x \in M_C(1, d)$. But we may descend for two consecutive values of n, which gives consecutive values of $P(n) = n + d - (g - 1)$ and we get $\mathcal{L} = \mathcal{L}_{n+1} \otimes \mathcal{L}_n^*$ which then has the desired universal property.
In the arbitrary rank case, we have the “determinant” morphism:

\[X_{SS} \to M_C(r, d) \xrightarrow{\text{det}} M_C(1, d) \]

coming from the family of line bundles \(\wedge^r \mathcal{E} \) on \(C \times X_{SS} \) which factors through \(M_C(r, d) \) because it is a categorical quotient! Thus we may take the vector bundle \(\mathcal{E}_n \) on \(C \times M_C(r, d) \) descended from \(\mathcal{E} \otimes (\wedge^r \mathcal{E})^{\otimes a} \) and “tensor back” by \((1, \text{det})^* \mathcal{L})^{\otimes -a}\) to obtain \(\mathcal{U} \) which has the desired universal property.

Claim: Each \(M_C(r, d) \) is irreducible.

Proof: First of all, notice that there are isomorphisms:

\[\cdots \otimes_{\mathcal{O}_C(1)} M_C(r, d) \xrightarrow{\otimes_{\mathcal{O}_C(1)}} M_C(r, d + r) \xrightarrow{\otimes_{\mathcal{O}_C(1)}} \cdots \]

which, in case \((r, d)\) are coprime are obtained by taking the tensor product \(\mathcal{U} \otimes \pi_C^* \mathcal{O}_C(1) \) (and in the non-relatively prime case are obtained by considering \(\mathcal{E} \otimes \pi_C^* \mathcal{O}_C(1) \) on the Quot scheme and using the categorical quotient). Thus we may assume that \(d > r(2g - 1) \) so all bundles are generated by sections.

When \(r = 1 \), this gives us a surjective map (in fact a projective bundle)

\[u_d : \text{Sym}^d(C) \to M_C(1, d); \quad D \mapsto \mathcal{O}_C(D) \]

defined rigorously by using the “universal” Cartier divisor \(\mathcal{D} \subset C \times \text{Sym}^d(C) \) and using it to construct the family \(\mathcal{O}_{C \times \text{Sym}^d(C)}(\mathcal{D}) \) of line bundles. Evidently, \(\text{Sym}^d(C) \) is irreducible, as it is the quotient of \(C^d \) by the permutation group.

In rank \(r \), a choice of \(r + 1 \) general sections of a bundle \(E \) of rank \(r \) and degree \(d \) gives a surjection \(\mathcal{O}_C^{r+1} \to E \) with kernel \((\wedge^r E)^* \). Dually, this means we can exhibit \(E^* \) as the kernel of a map:

\[0 \to E^* \to \mathcal{O}_C^{r+1} \to L \to 0 \]

where \(L = (\wedge^r E) \) (and then dualize to get \(E \)). It turns out that a general choice of \(r + 1 \) sections of a line bundle \(L \) of degree \(d \) has a semi-stable \(E \) as its kernel, and this gives a surjective morphism:

\[G(r + 1, \pi_* \mathcal{L}) \subset U \to M_C(r, d) \]

from an open subset \(U \) of the Grassmann bundle over \(M_C(1, d) \) to \(M_C(r, d) \). Since \(M_C(1, d) \) is irreducible, it then follows that \(M_C(r, d) \) is irreducible too.
For smoothness and the dimension count, we will use deformation theory. Given a stable bundle E of rank r and degree d, the Zariski tangent space is the space of (equivalence classes of) vector bundles E_{ϵ} on $C \times \text{Spec}(k[\epsilon])$ with the property that $E_{\epsilon}|_C \cong E$. We may trivialize E on an open cover $\cup U_i = C$ with intersections $U_{ij} = U_i \cap U_j$, and then E is determined by transition functions:

$$G_{ij} \in GL(\mathcal{O}_C(U_{ij}))$$

satisfying the cocycle condition:

$$G_{jk} G_{ij} = G_{ik}$$
on triple intersections U_{ijk}. An extension of E is given by an extension of the transition functions:

$$G_{ij} + \epsilon H_{ij} \in GL(\mathcal{O}_C(U_{ij})[\epsilon])$$

(the invertibility puts no constraint on the matrix H_{ij}) satisfying:

$$(G_{jk} + \epsilon H_{jk})(G_{ij} + \epsilon H_{ij}) = G_{ik} + \epsilon H_{ik}$$
or the original cocycle condition together with:

$$H_{jk} G_{ij} + G_{jk} H_{ij} = H_{ik}$$
on triple intersections U_{ijk}. But if we regard the H_{ij} as sections of the (trivialized!) bundle End(E), then this is precisely the cocycle condition to define an element of:

$$H^1(C, \text{End}(E))$$
(as the G_{ij} transition the H_{ij} to allow us to compare them on U_{ik}). And coboundaries are cocycles that give trivial deformations of E, so this is indeed the tangent space. Similarly, one checks that the obstruction space is:

$$H^2(C, \text{End}(E)) = 0$$
Thus on a curve C, there is no obstruction space, so $M_C(r, d)$ is smooth, and:

$$\dim(M_C(r, d)) = \dim(H^1(C, \text{End}(E))) = \chi(C, \text{End}(E)) + 1 = r^2(g - 1) + 1$$
by Riemann-Roch (and Schur: $h^0(C, \text{End}(E)) = 1$ since E is stable).
Finally, I want to use descent to describe:

The Determinantal Line Bundle: Going back to the semi-stable points of the Quot scheme $X_{SS} \subset \text{Quot}(V \otimes \mathcal{O}_C(-n), P(m))$ let’s assume that, in fact, far from being relatively prime, we actually have:

$$d = r(g - 1)$$

Proposition 4.5: There is a scheme structure on the subset

$$\Theta := \{E \mid H^0(C, E) \neq 0\} \subset \mathcal{M}^{r,r(g-1)}(C)$$

making it an ample Cartier divisor.

Proof: Let n be chosen as in Lemma 4.4, let $X_{SS} \subset \text{Quot}_p(V \otimes \mathcal{O}_C(-D)/C)$ be the semistable locus, where $P(m) = mr$, and $D = \sum_{i=1}^n p_i$ is a divisor on C consisting of distinct points. If U is the universal quotient on $C \times X_{SS}$, then pushing down the exact sequence:

$$0 \to U \to U(D) \to \bigoplus_{i=1}^n U(D)_{p_i} \to 0$$

yields the sequence:

$$0 \to \pi_{X_{SS}}U \to \pi_{X_{SS}}(D) \xrightarrow{f} \bigoplus_{i=1}^n U(D)_{p_i} \to R^1\pi_{X_{SS}}U \to 0$$

where the middle two sheaves are both locally free of rank $N = rn$. Moreover, since there exist semistable bundles E of degree $r(g - 1)$ with $H^1(C, E) = 0$, (e.g. $E = \bigoplus^r L$ where $H^1(C, L) = 0$), the first sheaf vanishes! Finally, the map f is G-invariant, so f descends, and $\wedge^N(f)$, a (nonzero) section of the line bundle $L := \text{Hom}(\wedge^n \pi_{X_{SS}}U(D), \bigoplus_{i=1}^n \wedge^r U(D)_{p_i})$ descends to a section s which vanishes precisely on Θ. If $m > M$ is fixed, then $\mathcal{O}_X(1) := \wedge^{mr} \pi_*U(m)$ is the linearization used in Theorem 4VB to define X_{SS}. In particular, some power of $\mathcal{O}(1)$ descends to an ample line bundle on $\mathcal{M}^{r,d}(C)$. We claim that there are integers a and b such that L^a and $\mathcal{O}(b)$ differ by the pullback of a line bundle from $\text{Pic}^d(C)$. This implies that Θ is ample.

But $\wedge^n \pi_{X_{SS}}U(D)$ is trivial, naturally isomorphic to $\wedge^N V \otimes \mathcal{O}$, and the difference between $\wedge^c \pi_{X_{SS}}U(c)$ and $\wedge^{(c+1)} \pi_{X_{SS}}U(c + 1)$ is a translate of the bundle $\wedge^p \mathcal{O}_p$ by the pullback of a line bundle from $\text{Pic}^d(C)$ ($p \in C$ is an arbitrary point). The result is therefore immediate, since up to translation, L and $\mathcal{O}(1)$ are powers of the same line bundle.