Mathematics 7800- Quantum Kitchen Sink - Spring 2002

5. Vector Bundles on a Smooth Curve. We will construct projective moduli spaces for semistable vector bundles on a smooth projective curve C by applying GIT to a suitable Grothendieck Quot scheme. The construction we present here is due to Carlos Simpson.

Let E be a vector bundle on a smooth projective curve C of genus g.
Definition: (a) The slope $\mu(E)=\operatorname{deg}(E) / \operatorname{rk}(E)$.
(b) E is stable if $\mu(F)<\mu(E)$ for all proper subbundles $F \subset E$.
(c) E is semistable if $\mu(F) \leq \mu(E)$ for all $F \subset E$.

Lemma 5.1: If $0 \rightarrow F \rightarrow E \rightarrow G \rightarrow 0$ is an exact sequence of vector bundles, then $\mu(F) \geq \mu(E)$ (resp. $>$) if and only if $\mu(E) \geq \mu(G)$ (resp. >).

Proof: Arithmetic! If $a, b, c, d>0$, then $\frac{a}{c}>\frac{a+b}{c+d}$ if and only if $\frac{b}{d}<\frac{a+b}{c+d}$.
Examples: (i) Every vector bundle on \mathbf{P}^{1} splits as a sum of line bundles, so only the line bundles $\mathcal{O}_{\mathbf{P}^{1}}(d)$ are stable, and only $\mathcal{O}_{\mathbf{P}^{1}}(d)^{\oplus n}$ are semistable.
(ii) E is (semi-)stable iff the dual bundle E^{*} is (semi-)stable.
(iii) E is (semi-)stable iff $E \otimes L$ is (semi-)stable for all line bundles L.
(iv) If E is semistable of rank r and degree d and:
(a) $d<0$, then $\mathrm{H}^{0}(C, E)=0$.
(b) $d>r(2 g-2)$, then $\mathrm{H}^{1}(C, E)=0$.
(c) $d>r(2 g-1)$, then E is generated by its global sections.
(Schur's) Lemma 5.2: (a) If E and F are stable with the same slope, then any map $f: E \rightarrow F$ is either 0 or an isomorphism.
(b) The only automorphism of a stable bundle E is scalar multiplication.
(c) (Jordan decomposition) If E is semistable, there is a filtration:

$$
0=E_{0} \subset E_{1} \subset \ldots \subset E_{n}=E
$$

such that $F_{i}:=E_{i} / E_{i-1}$ is a stable vector bundle and each $\mu\left(F_{i}\right)=\mu(E)$. The filtration is not canonical, in general, but the associated graded bundle $\oplus_{i=1}^{n} F_{i}$ is independent of the choice of filtration.

Proof: If $f: E \rightarrow F$ is not zero, then both $\operatorname{ker}(f)$ and $E / \operatorname{ker}(f)$ are bundles. If f isn't injective, then the stability of E implies $\mu(\operatorname{ker}(f))<\mu(E)$ and by Lemma 5.1, $\mu(E / \operatorname{ker}(f))>\mu(E)=\mu(F)$, contradictng the stability of F. So f is injective, and surjective by the stability of F. This gives (a).

If $\alpha: E \rightarrow E$ is an automorphism, let λ_{x} be an eigenvalue of the restriction of α to the fiber of E over $x \in C$. Then $\alpha-\lambda_{x}(\mathrm{id})$ drops rank at x, so it is not an isomorphism, and must be zero by (a) and we have (b). Finally, (c) follows from (a) by the usual Jordan-Hölder decomposition.
(Harder-Narasimhan) Lemma 5.3: If E is an any vector bundle on C, then there is a filtration:

$$
0=E_{0} \subset E_{1} \subset \ldots \subset E_{n}=E
$$

such that $F_{i}:=E_{i+1} / E_{i}$ are semistable vector bundles, with $\mu\left(F_{i}\right)>\mu\left(F_{i+1}\right)$. This filtration is uniquely determined by the property that if $F \subset E$ is any sub-bundle with $\mu(F) \geq \mu\left(E_{i}\right)$, then $F \subset E_{i}$.

Proof: Let $S=\{a \mid a<\mu(E)$ and $a=\mu(Q)$ for some quotient $E \rightarrow Q\}$. We claim first that S is a finite set. Indeed, let D be a divisor of large enough degree so that $E(D)$ is generated by its sections. Then any $Q(D)$ is also generated by its sections, so $\operatorname{deg}(Q(D)) \geq 0$ and $\mu(Q) \geq-\operatorname{deg}(D)$. So the elements of S are bounded below (and above!) and since the denominators are bounded above by r, it follows that S is finite.

Finiteness of S implies that the set of slopes of sub-bundles $F \subset E$ is bounded from above. Let $E_{1} \subset E$ be the sub-bundle of maximal rank among those of maximal slope. Then E_{1} is semi-stable and E / E_{1} is a vector bundle. If $F \subset E$ is another sub-bundle with $\mu(F)=\mu\left(E_{1}\right)$, then the span of F and E_{1} is yet another sub-bundle of the same slope (since the kernel of the map from $F \oplus E_{1}$ to the span must have the same slope). Since E_{1} was of maximal rank, it follows that $F \subset E_{1}$ which then has the desired property.

Now suppose inductively that the lemma holds for $F=E / E_{1}$. We may use the Harder-Narasimhan filtration of F :

$$
0=F_{0} \subset F_{1} \subset \ldots \subset F_{n-1}=F=E / E_{1}
$$

to uniquely define E_{i+1} by the condition that $E_{i+1} / E_{1}=F_{i}$. And it follows that this filtration has the desired property.

Thus every vector bundle on C is an extension of stable vector bundles, which are the "indecomposable" objects. They also have the smallest possible group of automorphisms, namely \mathbf{C}^{*}, though there are vector bundles with this automorphism group (called simple vector bundles) which are not stable.

The following theorem is due to Narasimhan and Seshadri:
Theorem 5.4: For each pair (r, d) of coprime positive integers, the functor:
Obj : schemes S with an equivalence class of vector bundles E on $C \times S$ with the property that each E_{s} is stable, of rank r and degree d (and $E \sim F \Leftrightarrow E \cong F \otimes \pi^{*} \Lambda$ for some line bundle Λ on S)
Mor : morphisms $\phi: S \rightarrow S^{\prime}$ such that $(\phi, \mathrm{id})^{*} E^{\prime} \sim E$
is represented by a projective scheme $M_{C}(r, d)$ which is irreducible and smooth, of dimension $r^{2}(g-1)+1$.

Proof: We need two key lemmas, the first solving a GIT problem, and the second having to do with the boundedness of families of sheaves on C.
(GIT) Lemma 5.5: If V and W are vector spaces and M is an integer, let

$$
G(V \otimes W, M)
$$

be the Grassmannian of M-dimensional quotients of $V \otimes W$. Then a point $\psi \in G(V \otimes W, M)$ is semistable (resp. stable) with respect to the natural line bundle and linearization of $\operatorname{SL}(V)$ if and only if

$$
\frac{\operatorname{dim}(H)}{\operatorname{dim}(V)} \leq \frac{\operatorname{dim}(\psi(H \otimes W))}{M} \quad(\text { resp. }<)
$$

for every proper subspace $H \subset V$.
Proof: Let $N=\operatorname{dim}(V)$ and $R=\operatorname{dim}(W)$ with a fixed basis w_{1}, \ldots, w_{R}. An point $\psi \in G(V \otimes W, M)$ lifts to $\widetilde{\psi}=\wedge^{M} \psi \in \wedge^{M}(V \otimes W)^{*}$ in the natural linearization. Given any basis e_{1}, \ldots, e_{N} of V and dual basis x_{1}, \ldots, x_{N}, we'll call $e_{i_{1}} \otimes w_{j_{1}} \wedge \ldots \wedge e_{i_{M}} \otimes w_{j_{M}}$ the induced basis of Plücker vectors. Thus the coordinates of $\widetilde{\psi}$ are the values:

$$
\wedge^{M} \psi\left(e_{i_{1}} \otimes w_{j_{1}} \wedge \ldots \wedge e_{i_{M}} \otimes w_{j_{M}}\right)=\psi\left(e_{i_{1}} \otimes w_{j_{1}}\right) \wedge \ldots \wedge \psi\left(e_{i_{M}} \otimes w_{j_{M}}\right) \in \mathbf{C}
$$

which are zero if and only if the $\psi\left(e_{i_{k}} \otimes w_{j_{l}}\right)$ are not linearly independent.

If $\lambda=\operatorname{diag}\left\{t^{r_{1}}, \ldots, t^{r_{N}}\right\}$ is a $1-\mathrm{PS}$ of $\operatorname{SL}(V)$ and x_{1}, \ldots, x_{N} is the associated (dual) basis, we'll say the weight of the Plücker vector above is $\sum_{j=1}^{M} r_{i_{j}}$. Then ψ is λ-unstable for this λ if and only if $\wedge{ }^{M} \psi$ vanishes on every Plücker vector of nonpositive weight.

Suppose $H \subset V$ has dimension n, $\operatorname{dim}(\psi(H \otimes W))=m$ and $\frac{n}{N}>\frac{m}{M}$. Let e_{1}, \ldots, e_{n} be a basis of H, extended to a basis e_{1}, \ldots, e_{N} of V and let $\lambda=\operatorname{diag}\left\{t^{n-N}, \ldots, t^{n-N}, t^{n}, \ldots, t^{n}\right\}$ for the dual basis. For each Plücker vector, if $\wedge^{M} \psi\left(e_{i_{1}} \otimes w_{j_{1}} \wedge \ldots \wedge e_{i_{M}} \otimes w_{j_{M}}\right) \neq 0$, then $\psi\left(e_{i_{1}} \otimes w_{1}\right), \ldots, \psi\left(e_{i_{M}} \otimes w_{M}\right)$ must be linearly independent, so the $e_{i_{j}}$ must involve at most m of the e_{1}, \ldots, e_{n} vectors, thus its weight must be at least $m(n-N)+(M-m) n$. But $M n-m N>0$ by assumption, so $\wedge^{M} \psi$ is λ-unstable for this λ.

Conversely, let λ be any 1-PS, diagonalized as $\lambda=\operatorname{diag}\left\{t^{r_{1}}, \ldots, t^{r_{N}}\right\}$ for a basis x_{1}, \ldots, x_{N}. If ψ is λ - unstable, let H_{n} be the span of e_{1}, \ldots, e_{n}, and let $m_{n}=\operatorname{dim}\left(\psi\left(H_{n} \otimes W\right)\right)$. Then λ-instability tells us:

$$
\text { (*) } \quad r_{1} m_{1}+r_{2}\left(m_{2}-m_{1}\right)+\ldots+r_{N}\left(M-m_{N-1}\right)>0
$$

because it is the minimal weight of a Plücker vector on which $\wedge^{M} \psi$ is nonzero. I claim that for some n, the "averaged" weights also satisfy:

$$
\frac{1}{n}\left(r_{1}+\ldots+r_{n}\right) m_{n}+\frac{1}{N-n}\left(r_{n+1}+\ldots+r_{N}\right)\left(M-m_{n}\right)>0
$$

It then follows that $\frac{n}{N}>\frac{m_{n}}{M}$ holds for $H=H_{n}$. To see the claim, notice first that if $m_{i+1}-m_{i} \leq m_{i}-m_{i-1}$, then we may combine r_{i} and r_{i+1}, replacing them with their average $\frac{r_{i}+r_{i+1}}{2}$ without decreasing $(*)$. The averaged weights are the same as the original, so we may assume the sequence of differences is increasing: $\Delta_{1}:=m_{1}<\Delta_{2}:=m_{2}-m_{1}<\ldots<\Delta_{N}:=m_{N}-m_{N-1}$. Now consider the linear function:

$$
L\left(t_{1}, t_{2}, \ldots, t_{N}\right)=r_{1} t_{1}+\ldots+r_{N} t_{N}
$$

which by assumption satisfies $L\left(\Delta_{1}, \ldots, \Delta_{N}\right)>0$, and consider its values at the points:

$$
p_{n}:=\left(\frac{\sum_{i=1}^{n} \Delta_{i}}{n}, \ldots, \frac{\sum_{i=1}^{n} \Delta_{i}}{n}, \frac{\sum_{i=n+1}^{N} \Delta_{i}}{N-n}, \ldots, \frac{\sum_{i=n+1}^{N} \Delta_{i}}{N-n}\right) \in \mathbf{R}^{N}
$$

These points are linearly independent and $L\left(p_{N}\right)=0$ (the r_{i} sum to zero). Thus they span the hyperplane $\left\{\sum t_{i}=\sum \Delta_{i}\right\} \subset \mathbf{R}^{N}$ and in particular, $\left(\Delta_{1}, \ldots, \Delta_{N}\right)=\sum_{i=1}^{N-1} y_{i} p_{i}-y_{N} p_{N}$ for positive values y_{i}, so some $L\left(p_{i}\right)>0$.

Thus, we've shown that $\frac{n}{N}>\frac{m}{M}$ if and only if ψ is λ-unstable for some λ. By the numerical criterion, this proves the "semi-stable" part of the lemma, and the stable part is proved by replacing each " $>$ " by a " \geq."
Lemma 5.6: Let $p \in C$, and $\mathcal{O}_{C}(1):=\mathcal{O}_{C}(p)$. If $n>2 g-1-\frac{d}{r}$ then:
(a) If E is semistable of rank r and degree d, then $\mathrm{H}^{1}(C, E(n))=0, E(n)$ is generated by global sections and for all subbundles $F \subset E$:

$$
\frac{h^{0}(C, F(n))}{\operatorname{rank}(F)} \leq \frac{h^{0}(C, E(n))}{\operatorname{rank}(E)}
$$

with equality if and only if F is semistable, $h^{1}(C, F(n))=0$ and for all m :

$$
\frac{\chi(C, F(m))}{\operatorname{rank}(F)}=\frac{\chi(C, E(m))}{\operatorname{rank}(E)}
$$

(b) If \mathcal{E} is any coherent sheaf of the same Hilbert polynomial $\chi(C, \mathcal{E}(n))=$ $P(m)=r m+d-r(g-1)$ as a vector bundle of rank r and degree d, and if every vector bundle quotient $\mathcal{E} \rightarrow G$ satisfies:

$$
\frac{h^{0}(C, G(n))}{\operatorname{rank}(G)} \geq \frac{P(n)}{r}
$$

then \mathcal{E} is itself a semistable vector bundle of rank r and degree d.
Proof: The key point is the following. If E is a semistable bundle of rank r and if $h^{1}(C, E) \neq 0$, then $h^{0}(C, E) \leq r g$ independent of the degree of E. This is well-known for line bundles, since every L with $h^{1}(C, L) \neq 0$ is a subsheaf of the canonical line bundle and $h^{0}\left(C, \omega_{C}\right)=g$. But here's a proof that generalizes. If $h^{1}(C, L) \neq 0$, then $\operatorname{deg}(L) \leq 2 g-2$. If $h^{0}(C, L) \geq g$, then there is a section $s \in H^{0}(C, L)$ vanishing at any $p_{1}, \ldots, p_{g-1} \in C$. If the p_{i} are "general," then $h^{0}\left(C, \mathcal{O}_{C}\left(\sum p_{i}\right)\right)=1$ and from:

$$
0 \rightarrow \mathcal{O}_{C}\left(\sum p_{i}\right) \rightarrow L \rightarrow \tau \rightarrow 0
$$

and $\operatorname{deg}(\tau) \leq g-1$ it follows that $h^{0}(C, L) \leq 1+h^{0}(C, \tau) \leq g$.
If E is semistable of rank r and $h^{1}(C, E) \neq 0$, then by Example (iv) we have $\operatorname{deg}(E) \leq r(2 g-2)$ and $\operatorname{deg}(F) \leq r^{\prime}(2 g-2)$ for any subbundle $F \subset E$ of rank r^{\prime}. If $h^{0}(C, E) \geq r g$, then there is a section $s \in H^{0}(C, E)$ vanishing at any $g-1$ points, and then we get $\mathcal{O}_{C}\left(\sum p_{i}\right) \subset E$ spanning a line bundle $L \subset E$ of degree $\leq 2 g-2$ satisfying $h^{0}(C, L) \leq g$ as above.

If $h^{0}(C, E) \geq r g$, then $h^{0}(C, E / L) \geq(r-1) g$ and we can find a section $s^{\prime} \in H^{0}(C, E / L)$ which again can be chosen to vanish at $g-1$ general points. The two sections s, s^{\prime} will span a sub-bundle $F \subset E$ of degree $\leq 2(2 g-2)$ which then has at most $2+2(g-1)=2 g$ sections from the exact sequence:

$$
0 \rightarrow \mathcal{O}_{C}\left(\sum p_{i}\right) \oplus \mathcal{O}_{C}\left(\sum p_{i}^{\prime}\right) \rightarrow F \rightarrow \tau \rightarrow 0
$$

and then one considers sections of E / F, etc.
We already saw that the first part of (a) is satisfied in Example (iv). Notice that:

$$
\frac{\chi(C, E(n))}{r}=\frac{P(n)}{r}=n+\frac{d}{r}-(g-1)
$$

Thus any semistable bundle F of rank $r^{\prime} \leq r$ and slope $\mu \leq \frac{d}{r}$ must satisfy $h^{0}(C, F(n))=\chi(C, F(n)) \leq \frac{r^{\prime}}{r} P(n)$, or else $h^{0}(C, F(n)) \leq r^{\prime} g<\frac{r^{\prime}}{r} P(n)$ by the key point above (and the lower bound $n>2 g-1-\frac{d}{r}$).

If $F \subset E$ and E is semistable, then every F_{i} in the Harder-Narasimhan filtration of F has slope at most $\frac{d}{r}$, so each subquotient F_{i} satisfies

$$
\frac{h^{0}\left(C, F_{i}(n)\right)}{\operatorname{rk}\left(F_{i}\right)} \leq \frac{P(n)}{r}
$$

and by Lemma 5.1, we have the same inequality for F. If equality holds, then it must hold for every F_{i}, and we conclude that every F_{i} has slope exactly $\frac{d}{r}$, so F is semistable, and $\frac{\chi(C, F(m))}{\operatorname{rk}(F)}=\frac{P(m)}{\operatorname{rk}(E)}$ for all m. This proves (a).

If \mathcal{E} is the sheaf in (b), let $\mathcal{T} \subset \mathcal{E}$ be the torsion subsheaf, and let G be the (semistable) quotient of smallest rank in the Harder-Narasimhan filtration of $\mathcal{E} / \mathcal{T}$. Since $\mu(G) \leq \mu(\mathcal{E} / \mathcal{T}) \leq \frac{d}{r}$, it follows as above that:

$$
\frac{\mathrm{h}^{0}(C, G(n))}{\operatorname{rk}(G)} \leq \frac{P(n)}{r}
$$

with equality if and only if $\mathcal{T}=0$ and $\mu(G)=\mu(\mathcal{E})$. But this means $\mathcal{E}=G$!
We are ready for the proof of Theorem 5.4 now.
Let $P(m)=r m+d-r(g-1)$ be the Hilbert polynomial of a bundle of rank r and degree d as in Lemma 5.6, and for fixed $n>2 g-1-\frac{d}{r}$, consider the Quot scheme

$$
\operatorname{Quot}\left(V \otimes \mathcal{O}_{C}(-n), P(m)\right)
$$

where V is a vector space of rank $P(n)$ (with $\mathrm{SL}(V)$ action).

If E is any semistable bundle of rank r and degree d, then as we have already remarked, $E(n)$ is generated by global sections and $H^{1}(C, E(n))=0$, so $h^{0}(C, E(n))=P(n)$ and the global section map $V \cong H^{0}(C, E(n)) \rightarrow E(n)$ twists to give a point $V \otimes \mathcal{O}_{C}(-n) \rightarrow E$ of the Quot scheme. Recall that the Quot scheme embeds in Grassmannians:

$$
\iota_{m}: \operatorname{Quot}\left(V \otimes \mathcal{O}_{C}(-n), P(m)\right) \hookrightarrow G(V \otimes W, M)
$$

for each $M=P(m)$ and sufficiently large m, and $W=H^{0}\left(C, \mathcal{O}_{C}(m-n)\right)$.
We will consider the GIT quotient of the Quot scheme for the action of $\mathrm{SL}(V)$ induced from the Grassmannian (and linearized as in Lemma 5.5). For large enough m, the two notions of vector bundle (semi-)stability and GIT (semi-)stability will coincide. When n, d are coprime, semi-stability equals stability, and the GIT quotient will represent the functor. Deformation theory will then show that the quotient is smooth, of the indicated dimension.

If $x \in \operatorname{Quot}\left(V \otimes \mathcal{O}_{C}(-n), P(m)\right)$, let $q_{x}: V \otimes \mathcal{O}_{C}(-n) \rightarrow \mathcal{E}_{x}$ be the corresponding quotient. Such a quotient induces a map $V \rightarrow H^{0}\left(C, \mathcal{E}_{x}(n)\right)$ and for each (large enough) m, let $\psi_{x}: V \otimes W \rightarrow \mathrm{H}^{0}\left(C, \mathcal{E}_{x}(m)\right)$ be the image point in the Grassmannian. Let $X_{U}(m), X_{S S}(m)$ and $X_{S}(m)$ be the loci of unstable, semistable and stable points for this embedding.

Step 1: For large enough m (independent of x), if
(i) \mathcal{E}_{x} is a semistable vector bundle and
(ii) $V \rightarrow \mathrm{H}^{0}\left(C, \mathcal{E}_{x}(n)\right)$ is an isomorphism, then $x \in X_{S S}(m)$.

Proof: If $x \in X_{U}(m)$, then by Lemma 5.5, there is an $H \subset V$ so that:

$$
(*) \frac{\operatorname{dim}(H)}{P(n)}>\frac{\operatorname{dim}\left(\psi_{x}(H \otimes W)\right)}{P(m)}
$$

and we need to show that the existence of such an H violates (i) or (ii).
For each $H \subset V$, let $\mathcal{F}_{x, H} \subset \mathcal{E}_{x}$ be the subsheaf generated by $H \otimes \mathcal{O}_{C}(-n)$. Assuming (ii), we see that $H \cong H^{0}\left(C, \mathcal{F}_{x, H}(n)\right)$. Consider:

$$
0 \rightarrow \mathcal{K}_{x, H} \rightarrow H \otimes \mathcal{O}_{C}(-n) \rightarrow \mathcal{F}_{x, H} \rightarrow 0
$$

and choose m_{0} so that $m \geq m_{0}$ implies that $\mathrm{H}^{1}\left(C, \mathcal{K}_{x, H}(m)\right)=0$ and $\mathrm{H}^{1}\left(C, \mathcal{F}_{x, H}(m)\right)=0$, for all $H \subset V$ and all x in the Quot scheme. Then $\psi_{x}(H \otimes W)=\mathrm{H}^{0}\left(C, \mathcal{F}_{x, H}(m)\right)$ is of dimension $\chi\left(C, \mathcal{F}_{x, H}(m)\right)$.

Thus if $(*)$ holds, then:

$$
\frac{\operatorname{dim}\left(\mathrm{H}^{0}\left(C, \mathcal{F}_{x, H}(n)\right)\right)}{P(n)}>\frac{\chi\left(C, \mathcal{F}_{x, H}(m)\right)}{P(m)}
$$

On the other hand, if we assume (i), then Lemma 5.6 (a) gives us:

$$
\frac{\operatorname{dim}\left(\mathrm{H}^{0}\left(C, \mathcal{F}_{x, H}(n)\right)\right.}{P(n)}<\frac{\operatorname{rank}\left(\mathcal{F}_{x, H}\right)}{r}
$$

(equality would force equality in the previous formula). But $\chi\left(C, \mathcal{F}_{x, H}(m)\right)=$ $r^{\prime} m+d^{\prime}-r^{\prime}(g-1)$ for $r^{\prime}=\operatorname{rk}\left(\mathcal{F}_{x, H}\right)$ and $d^{\prime}=\operatorname{deg}\left(\mathcal{F}_{x, H}\right)$, so we are getting:

$$
\frac{r^{\prime}}{r}>\frac{\operatorname{dim}\left(\mathrm{H}^{0}\left(C, \mathcal{F}_{x, H}(n)\right)\right.}{P(n)}>\frac{r^{\prime}\left(m+\frac{d^{\prime}}{r^{\prime}}-(g-1)\right)}{r\left(m+\frac{d}{r}-(g-1)\right)}
$$

There are only finitely many d^{\prime} and r^{\prime}, so since the right side approaches the left as $m \rightarrow \infty$, we obtain a contradiction when m is sufficiently large.

Step 2: After possibly increasing m again, if $x \in X_{S S}(m)$ then:
(a) The map $V \rightarrow \mathrm{H}^{0}\left(C, \mathcal{E}_{x}(n)\right)$ is an isomorphism and
(b) The quotient \mathcal{E}_{x} is a semistable vector bundle.

Proof of Step 2: By Lemma 5.5, if $x \in X_{S S}(m)$ (for any m), then $V \rightarrow \mathrm{H}^{0}\left(C, \mathcal{E}_{x}\right)$ must be injective, because any kernel would yield an H such that $\psi_{x}(H \otimes W)=0$. Similarly, for all $H \subset V$, we must have:

$$
(*) \frac{\operatorname{dim}(H)}{\operatorname{dim}\left(\psi_{x}(H \otimes W)\right)} \leq \frac{P(n)}{P(m)}
$$

Suppose \mathcal{E}_{x} were not a bundle or not semistable. Then by Lemma 5.6(b), we could find a quotient bundle $\mathcal{E}_{x} \rightarrow G$ so that $\frac{h^{0}(C, G(n))}{\operatorname{rk}(G)}<\frac{P(n)}{r}$. Let H be the kernel of the map $V \rightarrow \mathrm{H}^{0}(C, G(n))$ for such a quotient, and let $\mathcal{F}_{x, H}$ be the image of H in \mathcal{E}_{x}. If $\mathcal{F}_{x, H}$ is torsion, then there is a universal bound on its length, say K, and we can choose m so that $\frac{P(n)}{P(m)}<\frac{1}{K}$ violating (*).

Otherwise, by the arithmetic of Lemma 4.0, we have:

$$
(* *) \frac{\operatorname{dim}(H)}{\operatorname{rank}\left(\mathcal{F}_{x, H}\right)}>\frac{P(n)}{r}
$$

where the rank of $\mathcal{F}_{x, H}$ is the generic rank, which is the coefficient of m in $\chi\left(C, \mathcal{F}_{x, H}(m)\right)$. Since $\chi\left(C, \mathcal{F}_{x, H}(m)\right)=\operatorname{dim}\left(\psi_{x}(H \otimes W)\right)$ (see Step 1) we get a contradiction to $(*)$, perhaps after boosting m again, from the fact that there is a uniform upper bound on the constant terms of the Hilbert polynomials of the $\mathcal{F}_{x, H}$. So \mathcal{E}_{x} is semistable. Finally, since \mathcal{E}_{x} is semistable, the map $V \rightarrow \mathrm{H}^{0}\left(C, \mathcal{E}_{x}(n)\right)$, which we already saw was injective, must be an isomorphism by Lemma 5.6(a).
Step 3: For sufficiently large m
(a) $x \in X_{S}(m) \Longleftrightarrow x \in X_{S S}(m)$ and \mathcal{E}_{x} is stable.
(b) For any $x \in X_{S S}(m)$, the closed orbit $O\left(\widetilde{x}^{\prime}\right) \subset \overline{O(\widetilde{x})}$ corresponds to an $\mathcal{E}_{x^{\prime}}$ that is isomorphic to the associated graded of \mathcal{E}_{x}.

Proof of Step 3: (a) is the same argument as Steps 1 and 2. For (b), if $x \in X_{S S}(m)-X_{S}(m)$, let $F \subset \mathcal{E}_{x}$ be a proper subbundle of the same slope, and let $H \subset V$ be the kernel of the map $V \rightarrow \mathrm{H}^{0}(C, G(n))$, where $G=\mathcal{E}_{x} / F$. Consider the induced extension:

$$
(\dagger): 0 \rightarrow F \rightarrow \mathcal{E}_{x} \rightarrow G \rightarrow 0
$$

of vector bundles of the same slope.
If we take e_{1}, \ldots, e_{n} spanning H, extend to a basis of V, and consider the 1-PS subgroup $\lambda=\operatorname{diag}\left\{t^{n-N}, \ldots, t^{n-N}, t^{n}, \ldots, t^{n}\right\}$, then λ acts on the extension class of \dagger in $\mathrm{H}^{1}\left(C, G^{*} \otimes F\right)$ by multiplication by t^{N}, taking it to the split extension in the limit as $t \rightarrow 0$. We can repeat the process until we get to the associated graded of \mathcal{E}_{x}. Since the associated graded is uniquely determined by Schur's Lemma, and there must be some closed orbit in the closure of the orbit of \mathcal{E}_{x}, this must be the one!

We have proved that for large m (and arbitrary $(r, d)!$), the GIT quotient:

$$
G(V \otimes W, M) \supset \operatorname{Quot}\left(V \otimes \mathcal{O}_{C}(-n), P(m)\right)-\stackrel{\bar{f}}{-}>M_{C}(r, d)
$$

has the following properties:
(i) $M_{C}(r, d)$ is a projective scheme
(ii) The points of $M_{C}(r, d)$ correspond to associated gradeds of semistable vector bundles of rank r and degree d.
The $M_{C}(r, d)$ are independent of the choice of (large enough) m because they are all categorical quotients of the same open subscheme $X_{S S}(m)$!

Now take any vector bundle E on $S \times C$ and consider the sheaf $\pi_{S *}(E(n))$, where $E(n)=E \otimes \pi_{C}^{*} \mathcal{O}_{C}(n)$. If E is a family of semi-stable bundles of rank r and degree d (and $n>2 g-1-\frac{d}{r}$), then $\pi_{S *}(E(n))$ is locally free of rank $P(n)$ and the natural map:

$$
\pi_{S}^{*} \pi_{S *}(E(n)) \otimes \pi_{C}^{*} \mathcal{O}_{C}(-n) \rightarrow E
$$

is a surjective map of vector bundles. Locally (on S) we may trivialize $\pi_{S *}(E(n))$ each trivialization determines $U_{i} \rightarrow \operatorname{Quot}\left(V \otimes \mathcal{O}_{C}(-n), P(m)\right)$ which do not patch as maps to the Quot scheme, but do patch to:

$$
\phi: S \rightarrow M_{C}(r, d)
$$

So to prove that $M_{C}(r, d)$ represents the functor, we need only to find a universal vector bundle \mathcal{U} on $C \times M_{C}(r, d)$ with the property that any vector bundle E as above satisfies $E \sim(\phi, 1)^{*} \mathcal{U}$. We will use the following:
(Descent) Lemma 5.7: Given a linearized G-action on (X, L) and a vector bundle F on $X_{S S}(L)$ with a G-action, then F descends to the GIT quotient:

$$
\bar{f}: X_{S S}(L) \rightarrow X^{G}
$$

if and only if for each closed orbit $O(\widetilde{x})$, the stabilizer $G_{x} \subset G$ also stabilizes the fiber F_{x} of F at $x \in X_{S S}(L)$.

Proof (Kempf): If F descends, then by definition, $F=\bar{f}^{*}(\bar{F})$ is the pull-back of the descended bundle \bar{F}, so G_{x} acts trivially on the fibers F_{x}.

To prove the converse, it suffices to find, for each $x^{\prime} \in X_{S S}(L)$, an affine neighborhood V^{\prime} of $y:=\bar{f}\left(x^{\prime}\right) \in X^{G}$ and a trivialization of $\left.F\right|_{\bar{f}^{-1}\left(V^{\prime}\right)}$ by G invariant sections. Given $x \in \bar{f}^{-1}(y)$ with closed $O(\widetilde{x})$, there are $r=\operatorname{rk}(F)$ G-invariant sections of the restriction $\left.F\right|_{O(x)}$ which trivialize F along the orbit. Indeed, since we assumed that G_{x} acts trivially on F_{x}, we can translate a basis $e_{1}, \ldots, e_{r} \in F_{x}$ by G to obtain the desired sections $G e_{1}, \ldots, G e_{r}$.

Let $y \in V=D(h)^{G}$ for a homogeneous, invariant h in the homogeneous coordinate ring of X. Then $\bar{f}^{-1}(V)=D(h) \subset X_{S S}(L)$ is also affine and, as in projective GIT, the map $D(h) \rightarrow D(h)^{G}$ is the affine GIT quotient. I claim that there is a Reynolds operator $E: \mathrm{H}^{0}(D(h), F) \rightarrow \mathrm{H}^{0}(D(h), F)^{G}$. To see this, it suffices to show that G acts rationally on $\left.\mathrm{H}^{0}(D(h), F)\right)$.

But if we choose an open affine $U \subset D(h)$ on which F trivializes, then an $s \in \mathrm{H}^{0}(U, F)$ gives rise to a regular function $\phi: G \times U \rightarrow \mathbf{C}^{r}$ defined by $(g, x) \mapsto g s\left(g^{-1} x\right)$. Then if $G=\operatorname{Spec}(A)$ and $U=\operatorname{Spec}(B)$, we have $\phi=\sum a_{i} \otimes \vec{b}_{i}$, where $a_{i} \in A$ and $\vec{b}_{i}: U \rightarrow \mathbf{C}^{r}$, and as before, $\left.G s\right|_{U}$ is contained in the span, W, of the \vec{b}_{i}. Since the restriction of sections from $D(h)$ to U is injective, we prove rationality by intersecting W with $\mathrm{H}^{0}(D(h), F)$.

Now take the sections $G e_{1}, \ldots, G e_{r}$ spanning $\left.F\right|_{O(x)}$ and extend them to sections s_{1}, \ldots, s_{r} of $\left.F\right|_{D(h)}$, which is possible since $D(h)$ is affine. Apply the Reynolds operator to get invariant sections $E\left(s_{1}\right), \ldots, E\left(s_{r}\right)$, which still restrict to $G e_{1}, \ldots, G e_{r}$ on $O(x)$ (by property (i) of the Reynolds operator). Finally, consider the closed invariant subset $Z \subset D(h)$ where $E\left(s_{1}\right), \ldots, E\left(s_{r}\right)$ fail to span F. The image $\phi(Z) \subset D(h)^{G}$ is closed and does not contain $\bar{f}\left(x^{\prime}\right)$, so we can shrink $V=D(h)$ to a smaller open neighborhood $x^{\prime} \in V^{\prime}$ for which $E\left(s_{1}\right), \ldots, E\left(s_{r}\right)$ do span, finishing the proof.

Now suppose (r, d) are coprime and consider the universal quotient:

$$
V \otimes \mathcal{O}_{C \times X_{S S}}(-n) \rightarrow \mathcal{E}
$$

on $C \times X_{S S} \subset C \times \operatorname{Quot}\left(V \otimes \mathcal{O}_{C}(-n), P(m)\right)$. It is a consequence of flatness that \mathcal{E} is a vector bundle of relative rank r and degree d over $X_{S S}$, and \mathcal{E} is an $\operatorname{SL}(V)$-bundle by virtue of the fact that the Quot scheme represents the functor. That is, the action on \mathcal{E} is obtained by pulling back the universal quotient under the action of $\operatorname{SL}(V)$ on $C \times X_{S S}$. Since (r, d) are coprime, each of the bundles \mathcal{E}_{x} is stable (there is no smaller r^{\prime} with $\frac{d^{\prime}}{r^{\prime}}=\frac{d}{r}$) and since $\operatorname{Aut}\left(\mathcal{E}_{x}\right)=\mathbf{C}^{*}$, it follows that each stabilizer $\operatorname{SL}(V)_{x}=\operatorname{SL}(\mathrm{V}) \cap \mathbf{C}^{*} \cong \mu_{P(n)}$ is the group of $P(n)$-th roots of unity. Again, since (r, d) are coprime, it follows that $P(n)=n r+d-r(g-1)$ and r are coprime, so we can solve(!)

$$
1+a r=b P(n)
$$

and it follows that the action of the stabilizers $\operatorname{SL}(V)_{x}$ on $\mathcal{E} \otimes\left(\wedge^{r} \mathcal{E}\right)^{\otimes a}$ is trivial, and this bundle, at least, descends.

In the rank $r=1$ case, take $b=1$ and $a=P(n)-1$, and this gives us a bundle \mathcal{L}_{n} on $C \times \operatorname{Pic}^{d}(C)$ for the Picard scheme $\operatorname{Pic}^{d}(C)=M_{C}(1, d)$, which has the property that $\left(\mathcal{L}_{n}\right)_{x}$ is the $P(n)$ th tensor power of the line bundle associated to $x \in M_{C}(1, d)$. But we may descend for two consecutive values of n, which gives consecutive values of $P(n)=n+d-(g-1)$ and we get $\mathcal{L}:=\mathcal{L}_{n+1} \otimes \mathcal{L}_{n}^{*}$ which then has the desired universal property.

In the arbitrary rank case, we have the "determinant" morphism:

$$
X_{S S} \rightarrow M_{C}(r, d) \xrightarrow{\text { det }} M_{C}(1, d)
$$

coming from the family of line bundles $\wedge^{r} \mathcal{E}$ on $C \times X_{S S}$ which factors through $M_{C}(r, d)$ because it is a categorical quotient! Thus we may take the vector bundle \mathcal{E}_{n} on $C \times M_{C}(r, d)$ descended from $\mathcal{E} \otimes\left(\wedge^{r} \mathcal{E}\right)^{\otimes a}$ and "tensor back" by $\left((1, \operatorname{det})^{*} \mathcal{L}\right)^{\otimes-a}$ to obtain \mathcal{U} which has the desired universal property.
Claim: Each $M_{C}(r, d)$ is irreducible.
Proof: First of all, notice that there are isomorphisms:

$$
\ldots \xrightarrow{\otimes \mathcal{O}_{C}(1)} M_{C}(r, d) \xrightarrow{\otimes \mathcal{O}_{C}(1)} M_{C}(r, d+r) \xrightarrow{\otimes \mathcal{O}_{C}(1)} \ldots
$$

which, in case (r, d) are coprime are obtained by taking the tensor product $\mathcal{U} \otimes \pi_{C}^{*} \mathcal{O}_{C}(1)$ (and in the non-relatively prime case are obtained by considering $\mathcal{E} \otimes \pi_{C}^{*} \mathcal{O}_{C}(1)$ on the Quot scheme and using the categorical quotient). Thus we may assume that $d>r(2 g-1)$ so all bundles are generated by sections.

When $r=1$, this gives us a surjective map (in fact a projective bundle)

$$
u_{d}: \operatorname{Sym}^{d}(C) \rightarrow M_{C}(1, d) ; \quad D \mapsto \mathcal{O}_{C}(D)
$$

defined rigorously by using the "universal" Cartier divisor $\mathcal{D} \subset C \times \operatorname{Sym}^{d}(C)$ and using it to construct the family $\mathcal{O}_{C \times \operatorname{Sym}^{d}(C)}(\mathcal{D})$ of line bundles. Evidently, $\operatorname{Sym}^{d}(C)$ is irreducible, as it is the quotient of C^{d} by the permutation group.

In rank r, a choice of $r+1$ general sections of a bundle E of rank r and degree d gives a surjection $\mathcal{O}_{C}^{r+1} \rightarrow E$ with kernel $\left(\wedge^{r} E\right)^{*}$. Dually, this means we can exhibit E^{*} as the kernel of a map:

$$
0 \rightarrow E^{*} \rightarrow \mathcal{O}_{C}^{r+1} \rightarrow L \rightarrow 0
$$

where $L=\left(\wedge^{r} E\right)$ (and then dualize to get E). It turns out that a general choice of $r+1$ sections of a line bundle L of degree d has a semi-stable E as its kernel, and this gives a surjective morphism:

$$
G\left(r+1, \pi_{*} \mathcal{L}\right) \subset U \rightarrow M_{C}(r, d)
$$

from an open subset U of the Grassmann bundle over $M_{C}(1, d)$ to $M_{C}(r, d)$. Since $M_{C}(1, d)$ is irreducible, it then follows that $M_{C}(r, d)$ is irreducible too.

For smoothness and the dimension count, we will use deformation theory. Given a stable bundle E of rank r and degree d, the Zariski tangent space is the space of (equivalence classes of) vector bundles E_{ϵ} on $C \times \operatorname{Spec}(k[\epsilon])$ with the property that $\left.E_{\epsilon}\right|_{C} \cong E$. We may trivialize E on an open cover $\cup U_{i}=C$ with intersections $U_{i j}=U_{i} \cap U_{j}$, and then E is determined by transition functions:

$$
G_{i j} \in G L\left(\mathcal{O}_{C}\left(U_{i j}\right)\right)
$$

satisfying the cocycle condition:

$$
G_{j k} G_{i j}=G_{i k}
$$

on triple intersections $U_{i j k}$. An extension of E is given by an extension of the transition functions:

$$
G_{i j}+\epsilon H_{i j} \in G L\left(\mathcal{O}_{C}\left(U_{i j}\right)[\epsilon]\right)
$$

(the invertibility puts no constraint on the matrix $H_{i j}$) satisfying:

$$
\left(G_{j k}+\epsilon H_{j k}\right)\left(G_{i j}+\epsilon H_{i j}\right)=G_{i k}+\epsilon H_{i k}
$$

or the original cocycle condition together with:

$$
H_{j k} G_{i j}+G_{j k} H_{i j}=H_{i k}
$$

on triple intersections $U_{i j k}$. But if we regard the $H_{i j}$ as sections of the (trivialized!) bundle $\operatorname{End}(E)$, then this is precisely the cocycle condition to define an element of:

$$
H^{1}(C, \operatorname{End}(E))
$$

(as the $G_{i j}$ transition the $H_{i j}$ to allow us to compare them on $U_{i k}$). And coboundaries are cocycles that give trivial deformations of E, so this is indeed the tangent space. Similarly, one checks that the obstruction space is:

$$
H^{2}(C, \operatorname{End}(E))=0
$$

Thus on a curve C, there is no obstruction space, so $M_{C}(r, d)$ is smooth, and:

$$
\operatorname{dim}\left(M_{C}(r, d)\right)=\operatorname{dim}\left(H^{1}(C, \operatorname{End}(E))\right)=\chi(C, \operatorname{End}(E))+1=r^{2}(g-1)+1
$$

by Riemann-Roch (and Schur: $h^{0}(C, \operatorname{End}(E))=1$ since E is stable).

Finally, I want to use descent to describe:
The Determinantal Line Bundle: Going back to the semi-stable points of the Quot scheme $X_{S S} \subset \operatorname{Quot}\left(V \otimes \mathcal{O}_{C}(-n), P(m)\right)$ let's assume that, in fact, far from being relatively prime, we actually have:

$$
d=r(g-1)
$$

Proposition 4.5: There is a scheme structure on the subset

$$
\Theta:=\left\{E \mid \mathrm{H}^{0}(C, E) \neq 0\right\} \subset \mathcal{M}^{r, r(g-1)}(C)
$$

making it an ample Cartier divisor.
Proof: Let n be chosen as in Lemma 4.4, let $X^{S S} \subset \operatorname{Quot}_{P}\left(V \otimes \mathcal{O}_{C}(-D) / C\right)$ be the semistable locus, where $P(m)=m r$, and $D=\sum_{i=1}^{n} p_{i}$ is a divisor on C consisting of distinct points. If \mathcal{U} is the universal quotient on $C \times X^{S S}$, then pushing down the exact sequence:

$$
0 \rightarrow \mathcal{U} \rightarrow \mathcal{U}(D) \rightarrow \oplus_{i=1}^{n} \mathcal{U}(D)_{p_{i}} \rightarrow 0
$$

yields the sequence:

$$
0 \rightarrow \pi_{X_{*}^{S S}} \mathcal{U} \rightarrow \pi_{X_{*}^{S S}} \mathcal{U}(D) \xrightarrow{f} \oplus_{i=1}^{n} \mathcal{U}(D)_{p_{i}} \rightarrow R^{1} \pi_{X_{*}^{S S}} \mathcal{U} \rightarrow 0
$$

where the middle two sheaves are both locally free of rank $N=r n$. Moreover, since there exist semistable bundles E of degree $r(g-1)$ with $\mathrm{H}^{1}(C, E)=0$, (e.g. $E=\oplus^{r} L$ where $\mathrm{H}^{1}(C, L)=0$), the first sheaf vanishes! Finally, the $\operatorname{map} f$ is G-invariant, so f descends, and $\wedge^{N}(f)$, a (nonzero) section of the line bundle $\mathcal{L}:=\operatorname{Hom}\left(\wedge^{N} \pi_{X_{*}^{s}} \mathcal{U}(D), \otimes_{i=1}^{n} \wedge^{r} \mathcal{U}(D)_{p_{i}}\right)$ descends to a section s which vanishes precisely on Θ. If $m>M$ is fixed, then $\mathcal{O}_{X}(1):=\wedge^{m r} \pi_{*} \mathcal{U}(m)$ is the linearization used in Theorem 4 VB to define $X^{S S}$. In particular, some power of $\mathcal{O}(1)$ descends to an ample line bundle on $\mathcal{M}^{r, d}(C)$. We claim that there are integers a and b such that \mathcal{L}^{a} and $\mathcal{O}(b)$ differ by the pullback of a line bundle from $\operatorname{Pic}^{d}(C)$. This implies that Θ is ample.

But $\wedge^{N} \pi_{X_{*}^{S S}} \mathcal{U}(D)$ is trivial, naturally isomorphic to $\wedge^{N} V \otimes \mathcal{O}$, and the difference between $\wedge^{c r} \pi_{X_{*}^{S S}} \mathcal{U}(c)$ and $\wedge^{(c+1) r} \pi_{X_{*}^{S S}} \mathcal{U}(c+1)$ is a translate of the bundle $\wedge^{r} \mathcal{U}_{p}$ by the pullback of a line bundle from $\operatorname{Pic}^{d}(C)(p \in C$ is an arbitrary point). The result is therefore immediate, since up to translation, \mathcal{L} and $\mathcal{O}(1)$ are powers of the same line bundle.

