The Chinese Remainder Theorem. Topics in Algebra 5900 Spring 2011 Aaron Bertram

Let p and q be two (different) primes.

Definition. (i) The "mod pq" numbers are all the remainders:

 $\{0, 1, 2, \ldots, pq - 1\}$

when a natural number is divided by pq.

(ii) Addition and multiplication are defined as for mod p numbers.

Example. The multiplication table for **mod 6** numbers is:

*	1	2	3	4	5
1	1	2	3	4	5
2	2	4	0	2	4
3	3	0	3	0	3
4	4	2	0	4	2
5	5	4	3	2	1

There are two important differences from arithmetic mod p:

(i) There are zero entries in the interior of the multiplication table.

(ii) Some numbers (e.g. p and q) have no reciprocals mod pq.

Example: The multiplication table for **mod 15** numbers is:

*	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1	2	3	4	5	6	7	8	9	10	11	12	13	14
2	2	4	6	8	10	12	14	1	3	5	7	9	11	13
3	3	6	9	12	0	3	6	9	12	0	3	6	9	12
4	4	8	12	1	5	9	13	2	6	10	14	3	7	11
5	5	10	0	5	10	0	5	10	0	5	10	0	5	10
6	6	12	3	9	0	6	12	3	9	0	6	12	3	9
7	7	14	6	13	5	12	4	11	3	10	2	9	1	8

which can be completed with negative numbers as we did mod p.

Notice: The numbers that are divisible by p or q are the *only* numbers that "divide zero" and fail to have a reciprocal.

Definition. The **Cartesian product** of the numbers mod p and q is the set of all *ordered pairs* (r, s) where $r \in \{0, 1, \ldots, p-1\}$ and $s \in \{0, 1, \ldots, q-1\}$. It is written $\{0, 1, 2, \ldots, p-1\} \times \{0, 1, 2, \ldots, q-1\}$.

Example. The Cartesian product $\{0, 1\} \times \{0, 1, 2\}$ is:

 $\{(0,0), (1,0), (0,1), (1,1), (0,2), (1,2)\}$

(which can be thought of as points in the plane).

The Chinese Remainder Theorem. The numbers mod pq map to the Cartesian product of the numbers mod p and mod q by taking their "further remainders" after dividing by p and q:

 $\{0, 1, 2, \dots, pq-1\} \rightarrow \{0, 1, 2, \dots, p-1\} \times \{0, 1, 2, \dots, q-1\}$

This map "preserves the arithmetic" and it has an inverse.

Example: The numbers mod 6 map to $\{0,1\} \times \{0,1,2\}$ as follows:

$$0 \mapsto (0,0)$$

$$1 \mapsto (1,1)$$

$$2 \mapsto (0,2)$$

$$3 \mapsto (1,0)$$

$$4 \mapsto (0,1)$$

$$5 \mapsto (1,2)$$

This map has an inverse simply because it is a bijection.

The Genius of the Chinese Remainder Theorem. There is a systematic way to construct the inverse map. It is done as follows:

Step 1. Find integers a and b so that:

$$ap + bq = 1$$

(this can always be done using the Euclidean algorithm).

Step 2. Given an ordered pair (r, s), take the remainder when:

rbq + sap is divided by pq

This is the inverse image of (m, n) among the numbers mod pq.

Example. In the case of pq = 6, we easily find:

$$(-1)2 + (1)3 = 1$$

so we get the inverse by:

$$(0,0) \mapsto 0(3) + 0(-2) = 0$$

$$(1,0) \mapsto 1(3) + 0(-2) = 1$$

$$(0,1) \mapsto 0(3) + 1(-2) = -2 = 4 \pmod{6}$$

$$(1,1) \mapsto 1(3) + 1(-2) = 1$$

$$(0,2) \mapsto 0(3) + 2(-2) = -4 = 2 \pmod{6}$$

$$(1,2) \mapsto 1(3) + 2(-2) = -1 = 5 \pmod{6}$$

 $9 \cdot 17 + (-8) \cdot 19 = 153 - 152 = 1$

we find that we can invert the map:

{numbers mod 323} \rightarrow {numbers mod 17} \times {numbers mod 19} by sending:

$$(r, s) \mapsto r(-152) + s(153) \pmod{323}$$

Thus, for example,

 $20 \mapsto (3,1)$ which are its remainders mod 17 and 19

and

$$3(-152) + 1(153) = -303 = 20 \pmod{323}$$

is the inverse, which recovers 20 from the ordered pair (3, 1).

More Chinese Remainders: Given three distinct primes o, p, q, the map from numbers mod opq to ordered **triples** of numbers mod o, mod p and mod q:

{numbers mod opq} \rightarrow

{numbers mod o} × {numbers mod p} × numbers mod q} can be inverted as follows:

Step 1. Solve the following three equations with integers a, b, c, d, e, f:

$$ao + bpq = 1$$

 $cp + doq = 1$
 $eq + fop = 1$

Step 2. Given an ordered triple (r, s, t), take:

$$r(bpq) + s(doq) + t(fop) \pmod{\operatorname{opq}}$$

This is the inverse.

Example. Consider the numbers mod $105(=3 \cdot 5 \cdot 7)$.

Step 1. Solve the three magic equations:

$$(12)3 + (-1)35 = 1$$

(-4)5 + (1)21 = 1
(-2)7 + (1)15 = 1

Step 2. A number mod 105 can be recovered from its ordered triple $(r, s, t) \mod (3, 5, 7)$ by taking:

$$r(-35) + s(21) + t(15) \pmod{105}$$

Impress your friends. Ask a friend to take his or her age and give you only the remainders when it is divided by 3,5 and 7. You will recover the age with Step 2 above in no time!

4