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1.4. Vector Bundles on Curves Part Two. We tackle the construction of the
moduli spaces of semi-stable vector bundles on a non-singular projective curve.

• C is a non-singular projective curve of genus g

• L is a very ample line bundle on C and

• E is a semi-stable vector bundle on C of rank r and degree δ.

• ES is a family of such vector bundles over a scheme S

By Riemann-Roch, the Hilbert polynomial of E with respect to L is:

Q(d) = χ(C,E ⊗ Ld) = ddeg(L)r + (r(1− g) + δ)

We will freely confuse E with i∗E for the embedding i : C → Pn determined by
the very ample line bundle L. We will say, for example, that E is d-regular if i∗E
is a d-regular coherent sheaf on Pn.

Boundedness Lemma.
H1(C,E ⊗ L⊗d) = 0

for all d such that µ(E ⊗ Ld) > 2g − 2.

Proof. This is the same as the proof for line bundles. By Serre duality,

H1(C,E ⊗ L⊗d) = H0(C, (E ⊗ L⊗d)∗ ⊗ ωC)
∗

and the inequality on d is equivalent to the slope of (E⊗L⊗d)∗⊗ωC being negative.
A semi-stable vector bundle of negative slope has no nonzero global sections. □

Corollary. Choosing d as above, we conclude that E is d+ 1-regular and so

E ⊗ L⊗d+1 is generated by global sections

Moreover:

(i) For the family ES of semi-stable vector bundles,

π∗π∗(ES ⊗ Ld+1)⊗ L−d−1 → ES

is surjective, where π : CS → S and L is the constant (relatively ample) line bundle.

(ii) Let V be a fixed vector space of dimension Q(d). Then the universal quotient:

VCQuot
⊗ L−d−1 → E

over the scheme Quot(C, V ⊗ L−d−1, Q) includes every semi-stable quotient:

V ⊗ L−d−1 → E

factoring through an isomorphism between V and H0(C,E ⊗ Ld+1).

Remark. There are many other quotients, including unstable quotient bundles
and quotient coherent sheaves with torsion, as well as surjective maps to semi-
stable bundles such that the induced map from V to H0(C,E ⊗ Ld+1) is not an
isomorphism (even though the two vector spaces have the same dimension).
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Example. Let E = OP1 and L = OP1(1). Then we may take d = 0 and consider:

Quot(P1, V (−1), d+ 1) for V = k ⊕ k

This contains quotients E of the following two types:

V (−1) → OP1 and V (−1) → OP1(−1)⊕Op

always (in this case) inducing isomorphisms between V and H0(P1, E(1)).

The set of OP1 quotients is isomorphic to:

Iso(V,H0(P1,O(1))/k∗ = PGL(2, k)

where k∗ = Aut(OP1). Similarly, each OP1(−1)⊕Op quotient appears as:

Iso(V,H0(P1,O(−1)⊕Op))/Aut(OP1(−1)⊕Op) = P1

so all such quotients (for p ∈ P1) make up the complement of PGL(2, k) in the
Quot scheme, which is isomorphic to P3.

Remark. The Quot schemes

Quot(P1, V ⊗ L−d−1, Q)

admit an action of GL(V ) that factors through an action of PGL(V ) that is free on
the locus of quotients that are stable vector bundles with an induced isomorphism
on global sections. Thus, this locus ought to be a principal PGL(V )-bundle over
the moduli space of stable bundles. We will now prove that it is quasi-projective.

Openness of Semi-Stability and Stability. Let ES be coherent sheaf on CS

that is flat over a scheme S of finite type with Hilbert polynomial Q. Then:

(i) The points of S over which ES = ES is locally free is an open subset Uvb.

(ii) The points of S over which ES is semi-stable is an open subset Uss ⊂ Uvb.

(iii) The points of S over which ES is stable is an open subset Us ⊂ Uss ⊂ Uvb.

Proof. In each case, we can use relative Quot schemes of quotients of ES . In
the first case, Es fails to be locally free if and only if there is a surjection:

Es → Fs

with kernel isomorphic to a skyscaper sheaf Op. Thus, the relative Quot scheme:

Quot(CS , ES , Q− 1) → S

is proper over S, with, therefore, a closed image, consisting precisely of the points
for which Es is not locally free. The complement is then the open subset Uvb.

Similarly, consider the points s ∈ Uvb for which Es is not semi-stable. Then as
we’ve seen, Es has a maximal destabilizing sub-bundle:

0 → Fs → Es → Es/Fs → 0

The set of ranks and degrees of such sub-bundles is bounded since S has finite type
so there is a finite union of relative Quot schemes:

Quot(CUvb
, ES , Q− P ) → Uvb

as P ranges over the Hilbert polynomials of each maximal destabilizing subbundle.
This maps onto the locus of unstable vector bundles, which is therefore closed.

The argument for the openness of Us is completely analogous. □
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Going back to the Corollary, we now have:

Us ⊂ Uss ⊂ Quot(C, V ⊗ L−d−1, Q)

for the universal quotient. Moreover, the locus of semi-stable quotients for which:

V → H0(C,Es ⊗ Ld+1)

is not an isomorphism is the locus where the map VUss
→ π∗(EUss

⊗ Ld+1) of
locally free sheaves fails to be an isomorphism, which is a divisor in Uss.

Corollary. If ER is a vector bundle on CR (for R a DVR), then:

(i) If Ek(R) is stable, then EK is stable.

(ii) If Ek(R) is semi-stable, then EK is semi-stable.

The valuative criterion is a sort of converse to this.

Semi-stable replacement. Each family EK of semi-stable vector bundles has a
semi-stable limit Ek(R). If the limit is stable, then it is unique up to isomorphism.

Proof. The existence of a locally free sheaf ER on CR restricting to EK , and
hence of a locally free limit Ek(R) was established in the previous section under the
valuative criterion. Suppose Ek(R) is unstable, and let:

0 → Fk(R) → Ek(R) → F ′
k(R) → 0

be the inclusion of the maximal destabilizing sub-bundle. Then the modification:

0 → E′
R → ER → i∗F

′
k(R) → 0

gives rise to a new limit fitting into:

(∗) 0 → F ′
k(R) → E′

k(R) → Fk(R) → 0

Now suppose F ′′
k(R) ⊂ E′

k(R) is the maximal destabilizing sub-bundle of E′
k(R). Then

(a) The slope of F ′′
k(R) is less than the slope of Fk(R), or

(b) The slope of F ′′
k(R) is equal to the slope of Fk(R) and the rank is smaller, or:

(c) The slope and rank are the same, and the inclusion of F ′′
k(R) splits the sequence

(∗) via an isomorphism with Fk(R), so that E′
R, too, admits a quotient of F ′

k(R).

In the first two cases, the new limit E′
k(R) is less unstable than Ek(R), and we

can proceed by induction. In the last case, we may do one additional elementary
modification with quotient F ′

k(R):

0 → E
′′

R → E′
R → i∗F

′
k(R) → 0

and conclude that the quotient:

0 → E
′′

R → ER → F ′ → 0

is a quotient sheaf defined (and flat!) over R/m2, restricting to the quotient F ′
k(R)

over R/m. We now consider the analogous extension (∗) for the restriction of E′′
R

to Ck(R), and apply the same analysis. Continuing in this way, we either eventually
obtain a limit that satisfies (a) or (b), or else we produce a quotient sheaf that is
flat over R/mn for all n, extending the quotient F ′

k(R). But since the Quot scheme

has finite type over Spec(R), it follows that ER itself must have a flat quotient F ′
R

of the same rank and degree as F ′, and then EK was unstable to begin with.
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Now suppose ER and E′
R both spread EK with stable limits Ek(R) and E′

k(R).

Then because these are stable vector bundles of the same slope, any morphism
between them is either an isomorphism or zero. Then as in the case of line bundles,
we conclude that the limit is unique. □

Remarks. (i) It is possible to have limits of stable bundles that are semi-stable but
not stable (in which case the moduli space of stable bundles will not be proper).
But this can only happen when the rank and degree are not coprime.

(ii) A limit that is semi-stable but not stable need not be unique. For example:

tϵ : 0 → OC → Et → OC → 0

for t ∈ k∗ and ϵ ̸= 0 is a constant family of non-split bundles with a split limit.

Thus by the valuative pre-criteria, we have reason to believe that the moduli
of stable vector bundles (modulo the usual equivalence class on families) will be
a separated scheme, possibly quasi-projective, of finite type and if n and d are
coprime, then it will be proper. With the use of extension classes, we can say more
about this hypothetical scheme, e.g. find itsdimension, prove it is irreducible and
get a unirationality result. We let:

VecstC(r, d)(S) = {ES on CS |Es is stable, of rank r and degree d for all s ∈ S}/ ∼
and

VecstC(r, L)(S) = {ES on CS |Es is stable, of rank r with ∧rEs = L for all s ∈ S}/ ∼
so that on closed points, we have:

∧r : VecstC(r, d)(k) → Picd(C)(k)

with fibers equal to the sets VecstC(r, L)(k). It is these fibers that we now study:

Rank Two. If d is sufficiently large, then every semi-stable rank two vector bundle
E with degree d satisfies H1(C,E) = 0 and has a global section that vanishes
nowhere, giving an exact sequence:

0 → OC → E → L → 0 with L = ∧2E

Corollary. The moduli VecstC(2, L) of stable rank two vector bundles of fixed
determinant (if it exists) is unirational and non-singular, of dimension 3g − 3.

Proof. The space of non-zero extensions (modulo scalars):

Pn = P(Ext1(L,OC)
∗)

admits a tautological extension (and family of rank two vector bundles) on C×Pn:

0 → OCPn (+1) → EPn → L → 0

and therefore a surjective rational map: f : Pn −− > VecstC(2, L)(k).

This shows that the moduli space, if it exists, is irreducible and unirational.
Moreover, n = d + g − 1 − 1 by Riemann-Roch, since Hom(L,OC) = 0 and the
fibers of the map f over stable bundles E are open subsets of the projective spaces
P(H0(C,E)∗), of dimension d− 2(g − 1)− 1 (Riemann-Roch). The difference is:

3g − 3 = the dimension of the moduli space

(which is only coincidentally equal to the dimension of the moduli space of curves).
□
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Higher Rank. We proceed with r − 1 global sections, giving:

0 → Or−1
C → E → L → 0

and the parameter space for this (modulo automorphisms) is the Grassmannian

Gr(r − 1, n+ 1) = Gr(r − 1,Ext1(L,OC))

of r − 1-planes. This is equipped with a rational surjective map (for large d):

f : Gr(r − 1, n+ 1)−− > VecstC(r, L)(k)

with fibers that are open subsets of the Grassmannians Gr(r− 1,H0(C,E)). Then:

dim(Gr(r − 1, n+ 1)) = (r − 1)(n− r − 2) = (r − 1)(d+ g − 1− (r − 1)) and

dim(Gr(r − 1,H0(C,E)) = (r − 1)(d− r(g − 1)− (r − 1))

and the difference is:

(r − 1)(r + 1)(g − 1) = (r2 − 1)(g − 1) = dimension of moduli

Exercise. Prove that when g ≥ 1, the sets of semi-stable vector bundles of each
rank and degree is non-zero, and that when g ≥ 2, the sets of stable vector bundles
of each rank and degree is non-zero.

Divisors on Moduli. The claim that VecstC (r, d) is a quasi-projective variety
(projective if gcd(r, d) = 1) requires the existence of a line bundle L and “enough”
sections of tensor powers of L to conclude that L is ample.

Rank One. From the surjective Abel-Jacobi maps (when d ≥ 2g − 1)

ad : Cd(k) → Picd(C)(k)

with fibers P(H0(C,L)∗) = Pd−g
k , we may conclude that the Picard variety Picd(C)

representing the functor exists (as a Hilbert scheme of projective spaces in Cd) and
that it is a non-singular projective variety of dimension g. Choosing a base point
p ∈ C yields isomorphisms

Picd−1(C) → Picd(C); L 7→ L(p)

with Pic0(C) being an abelian variety (the connected component of the identity).

In particular, the image of the Abel-Jacobi map:

ag−1 : Cg−1 → Picg−1(C)

is the locus of line bundles with a global section. It cannot be surjective, so there
are line bundles L of degree g − 1 on C with

H0(C,L) = 0 = H1(C,L) because χ(C,L) = 0

On the other hand, since χ(C,L′) = 1 for line bundles L′ of degree g, we have:

ag : Cg → Picg(C)

is surjective (Abel’s Theorem), and birational since the fibers are projective spaces.

We may attach a line bundle LLS
to any family LS ∈ Picg−1(C)(S) as follows:

LLS
= detRπ∗LS

for the map π : CS → S over an irreducible base scheme S.
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This determinant line bundle may be computed by choosing a reduced effective

divisor D =
∑d

i=1 pi of large degree on C and pushing forward the sequence:

0 → LS → LS(D) → LS(D)/LS → 0

to obtain:

0 → π∗LS → π∗LS(D)
ϕ→ π∗LS(D)/LS → R1π∗LS → 0

and since π∗LS(D) and π∗LS(D)/LS are locally free sheaves of the same rank d,

(i) by the projection formula, the line bundle:

det(Rπ∗LS) := ∧d(π∗LS(D))⊗ ∧d(π∗LS(D)/LS)
∗

satisfies det(Rπ∗LS) = det(Rπ∗(LS ⊗ π∗A) for any line bundle A on S.

(ii) if ϕ has full rank at some point, then the Cartier divisor support:

ΘLS
:= Supp(R1π∗LS)

computes the “determinant” line bundle via: OS(−ΘLS
) ∼= det(Rπ∗LS). This

happens when some line bundle Ls in the family has no global sections.

Corollary. The image of ag−1 is a (Cartier) divisor Θ on Picg−1, and:

ΘLS
= f∗Θ

for the map f : S → Picg−1(C) determined by (equiv class of) the family LS .

Theorem (Lefschetz). The line bundle L = OPicg−1(C)(Θ) satisfies:

(i) L has a unique global section (modulo scalars).

(ii) L2 is generated by global sections.

(iii) L3 is very ample.

Note that this line bundle (and Θ divisor) are canonical, but only on the compo-
nent Picg−1(C). For any other component Picd(C), we may choose a line bundle L
of degree d− g − 1 and translate Θ 7→ Θ+L = {L′ = A⊗L | H0(C,A) ̸= 0} to get
a non-canonical theta divisor on Picd(C). This becomes relevant when we ask for
relative Theta divisors of Picard varieties on a family of curves over a base scheme.

Rank Two and More. To be continued......


