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1.3. Vector Bundles on Curves Part One. Let C be a nonsingular projective
curve of genus g over an algebraically closed field k. We aim to find a moduli space
for a good class of vector bundles E of rank r and degree d over C.

First, we can look at low genus:

Genus zero (Grothendieck) Each vector bundle on P1
k (the only curve of genus 0)

is a direct sum of line bundles,

E = OP1(d1)⊕ · · · ⊕ OP1(dr)

with d = d1 + · · ·+ dr, which we will always arrange so that d1 ≥ · · · ≥ dr.

Remark. In particular, the only simple vector bundles on P1
k are line bundles.

Genus one (Atiyah) The simple vector bundles on a curve C of genus one satisfy:

(i) The rank and degree of E are coprime, and for each such rank and degree:

(ii) There is one such bundle with each given determinant det(E) = ∧rE.

Remark. One example to keep in mind is the family of extensions:

ϵ : 0 → OC → E → OC → 0

varying in the g-dimensional vector space:

Ext1(OC ,OC) = H1(C,OC) = H0(C,ωC)
∗

When ϵ = 0, the sequence is split and E is trivial, but when ϵ ̸= 0, E is not
isomorphic to the trivial bundle (but it is also evidently not simple). One sees this
from the connecting homomorphism:

δ : H0(C,OC) → H1(C,OC) with δ(1) = ϵ

Therefore E has only a one-dimensional space of global sections when ϵ ̸= 0.

In general, given two vector bundles F ′ and F , an extension class ϵ ∈ Ext1(F, F ′)
determines a vector bundle E via the short exact sequence:

0 → F ′ → E → F → 0

which splits if and only if ϵ = 0.

Not The Moduli Space of Vector Bundles. Fix r and d, and consider:

Vec(S) = VecC(r, d)(S) = {locally free sheaves ES on C × S}
such that each Ek(s) has rank r and degree d. This is contravariant via the pullback.

We start with the pre-check for separatedness and properness.

Valuative Criterion. Let EK ∈ Vec(K) for the quotient field of a DVR R. Then:

(i) EK always spreads to a locally free sheaf ER ∈ Vec(R), but

(ii) The isomorphism class of Ek(R) is uniquely determined if and only if r = 1.

Proof. Choose an ample line bundle L on CR = C × Spec(R) so that E∗
K ⊗ L

is generated by global sections, where E∗
K is the dual vector bundle to EK , and

consider the vector space V = H0(CK , E∗
K ⊗ L) with EK ⊂ V ∗

CK
⊗ L derived from

the surjection VCK
→ E∗

K ⊗ L.
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This spreads to a locally free subsheaf ER ⊂ V ∗
CR

⊗ L by the properness of the
Quot scheme. This gives (i) since the subsheaf Ek(R) ⊂ V ∗

Ck(R)
⊗ L on the central

fiber curve Ck(R) is torsion free, hence locally free.

In (i), the choice of spreading of EK depended on an embedding EK ⊂ V ∗
CK

⊗L.
Suppose that ER and E′

R are two distinct spreads of EK to CR. Note that:

C0 := Ck(R) ⊂ CR

is a Cartier divisor, defined by the equation t = 0 (where t generates mR). Then:

E′
R(−nC0) ⊂ ER

spreads the identity map on EK for all sufficiently large values of n, and there is no
such inclusion for sufficiently negative values of n. Let m be chosen to be minimal
supporting the spreading of the identity map on EK . Then E′

R(−mC0) ⊂ ER

induces a non-zero morphism:

f0 : E′
k(R) ⊗OC0(−mC0) → Ek(R)

of locally free sheaves on C0 (otherwise the identity would spread for m + 1).
Moreover, the cokernel:

Fk(R) = Ek(R)/E
′
k(R)(−mC0)

is locally free, as one can see from the short exact sequence of coherent sheaves on
the nonsingular surface CR:

0 → E′
R(−mC0) → ER → i∗Fk(R) → 0

Thus if r = 1, then E′
R(−mC0) → ER is an isomorphism, and the line bundles

over the central fiber are isomorphic, while in higher rank, the limit is in fact never
unique because of the Corollary below.

Remarks. The line bundleOC0(C0) is trivial, since it is pulled back from Spec(k(R)).
This is why the tensor product E′

R⊗OCR
(−nC0) does not change the isomorphism

class of the vector bundle E′
k(R) on the central fiber.

Elementary Modifications. Given a locally free sheaf ER and a surjection:

Ek(R) → Fk(R) → 0

the kernel sheaf E′
R in the short exact sequence of sheaves on CR:

0 → E′
R → ER → i∗Fk(R) → 0

is locally free and the two restrictions to the central fiber fit in short exact sequences:

0 → F ′
k(R) → Ek(R) → Fk(R) → 0

0 → Fk(R) → E′
k(R) → F ′

k(R) → 0

with defining extension classes in Ext1(F, F ′) and Ext1(F ′, F ), respectively.

Example. Consider the trivial bundle ER = OP1
R
⊕OP1

R
and the surjection:

OP1
k(R)

⊕OP1
k(R)

→ OP1
k(R)

(1) → 0

Then the restriction of E′
R to C0 = P1

k(R) fits in an exact sequence

0 → OP1
k(R)

(1) → E′
k(R) → OPk(R)

(−1) → 0

which is necessarily split. Thus, it is isomorphic to OP1
k(R)

(1)⊕OP1
k(R)

(−1).
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Geometric Interpretation. The projectivization P(ER) is an r + 1-dimensional
non-singular scheme over Spec(R), that specializes:

P(EK) to P(Ek(R))

A quotient Ek(R) → Fk(R) corresponds to a sub-projective bundle on Ck(R):

P(Ek(R)) ⊂ P(Ek(R)) ⊂ P(ER)

which we may blow up in P(ER). The strict transform of P(Ek(R)) is the exceptional
divisor for the contraction to a new projective bundle over CR, which is P(E′

R). In
this way, for example, trivial families of Hirzebruch surfaces (Fn)R maybe modified
to specialize to Hirzebruch surface (Fn+2)k(R) at the central fiber.

We generalize this to the following Corollary.

Corollary. A trivial family ER (i.e. the pull back of a bundle Ek) of rank ≥ 2 can
always be modified to specialize to a vector bundle that is not the pull-back of Ek.

Proof. Any vector bundle on C0 admits surjective maps to an ample line bundle:

Ek(R) → Lk(R) → 0

such that there are no non-zero maps Lk(R) → Ek(R). Thus as in the example
above, the elementary modification E′

R of the trivial family ER by the surjection
to Lk(R) specializes to a bundle that is not the pull back from Ek. □

Boundedness also is a problem for vector bundles of rank ≥ 2.

Boundedness for Line Bundles. The Abel-Jacobi map:

Hilb(C, d)(k) = Cd → Vec(C, 1, d)(k)

is surjective on closed points for d ≥ g by a Theorem of Riemann. Moreover,

L 7→ L⊗OC(p)

determines a bijection:

Vec(C, 1, d)(k) ↔ Vec(C, 1, d+ 1)(k)

so all the moduli functors for rank one and degree d are bounded.

Unboundedness in General. Fix r > 1 and d. Then direct sums:

E = L1 ⊕ · · · ⊕ Lr

of line bundles of degrees d1 ≥ · · · ≥ dr with
∑

di = d are not a bounded family.
For example, there is no ample line bundle L such that E⊗L is generated by global
sections for all such E (since dr can be arbitrarily negative).

As noted in §0.1, families of line bundles still have the “isomorphism problem.”
But there is a projective moduli space of line bundles with a universal family of
line bundles via the following adjustment:

The Picard Functor. The functor:

Picd(C)(S) = {invertible sheaves LS of relative degree d on CS = C ×k S}/ ∼
modulo the equivalence relation:

LS
∼= LS ⊗ f∗A for f : CS → S

is represented by a projective moduli space Picd(C), in the sense that:
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(a) Each family LS determines a morphism:

aL : S → Picd(C)

and equivalent familes determine the same morphism.

(b) The induced map on closed points: Picd(C)(k) → Picd(C)(k) is a bijection.

(c) There is a Poincaré line bundle P on C ×Picd(C) that pull-backs in (a) to a

line bundle equivalent to each family LS under the map p∗aL : C×S → C×Picd(C).

Note. The Poincaré line bundle is only determined up to equivalence.

Before we prove this, we address the issues with vector bundles of higher rank.

Definition. (a) The (Mumford) slope of a vector bundle E is the ratio:

µ(E) =
deg(E)

rk(E)

(b) A vector bundle E on C is unstable if there is a subbundle F ⊂ E such that

µ(F ) > µ(E)

otherwise it is semi-stable, and stable if µ(F ) < µ(E) for all sub-bundles F ⊂ E.

Remark. If F ⊂ E is injective as a map of coherent sheaves but the quotient E/F
fails to be locally free, then F can be “saturated” to a subbundle F ⊂ F ′ ⊂ E
where F ′ = ker(F → (F/E)/(F/E)tors). If different from F , the saturation has
larger slope than the slope of F . It follows that we lose no generality above if we
assume that the subbundles F ⊂ E are saturated, so that E/F is also locally free.

Examples. (a) Line bundles are stable.

(b) Direct sums of two or more line bundles are semistable only if the line bundles
have the same degree. Direct sums of two or more vector bundles are never stable.

(c) If 0 → F ′ → E → F → 0 is an exact sequence of vector bundles, then:

µ(F ′) < µ(E) ⇔ µ(E) < µ(F ) and µ(F ′) > µ(E) ⇔ µ(E) > µ(F )

Schur’s Lemma. If µ(E) ≥ µ(E′) and E and E′ are stable, then either:

(i) Hom(E,E′) = 0 or else

(ii) E is isomorphic to E′ and Hom(E,E′) = k, generated by an isomorphism. In
particular, stable vector bundles are simple but unlike simple bundles, every nonzero
morphism between stable bundles of the same rank and degree is an isomorphism.

Proof. This is follows from (c) above. Given f ∈ Hom(E,E′), consider:

F = ker(f) ⊂ E and E → F ′ = im(f) ⊂ E′

Then by stability, µ(F ) < µ(E) and µ(E) < µ(F ′) < µ(E′) ≤ µ(E) generates a
contradiction unless either f = 0 or f is an isomorphism (i.e. F ′ = 0 or F ′ = E′).

If f and g are two isomorphisms, then f − λg drops rank at any given point
p ∈ C for a suitable value of λ (by considering the eigenvalues) so this is not an
isomorphism and therefore f − λg = 0 for this value of λ. This gives (ii) □

Remark. This is called Schur’s Lemma by analogy with the Schur Lemma for
homomorphisms of irreducible representations of a group G. In fact, this is more
than an analogy when we consider the theorem of Narasimhan and Seshadri.
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As another application of (c), we have:

Lemma. (i) If E,E′ are semi-stable and µ(E) > µ(E′), then Hom(E,E′) = 0.

(ii) The cokernel and kernel of a map of semi-stable vector bundles:

f : E → E′

of the same slope µ = µ(E) = µ(E′) are also both semi-stable of slope µ. Thus
the semi-stable vector bundles of slope µ are an Artinian full abelian subcategory
of the category of coherent sheaves, and the stable vector bundles are the simples.
That is, every semi-stable bundle E has a (non-unique) composition series, known
as a Jordan-Hölder filtration:

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

all of whose subquotients Ei/Ei−1 are stable.

Proof. Left to the reader.

In contrast, unstable vector bundles carry a uniquely defined filtration:

Lemma. The Harder-Narasimhan filtration of an arbitrary vector bundle F :

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fm = F

is uniquely determined by the property that:

(i) Fi/Fi−1 is a semi-stable vector bundle for all i and

(ii) The slopes µi := µ(Fi/Fi−1) are strictly decreasing.

Proof. By induction on the rank of F . Choose an embedding F ⊂ V ∗ ⊗k L for
a line bundle L. Then the slopes of the sub-bundles of F are bounded above by
deg(L), and so there is a sub-bundle E ⊂ F of maximal slope since the slopes of
subbundles of F are a discrete set. Moreover, among these sub-bundles, we may
choose an E of maximal rank. Then E is semi-stable, in particular, and we may use
the Harder-Narasimhan filtration F ′

• of the quotient F ′ to get a Harder-Narasimhan
fitration of F by setting F1 = E and Fi+1 = ker(F → F ′/F ′

i ) so that the Fi fit in
exact sequences:

0 → E → Fi+1 → F ′
i → 0

In particular, µ(E) > µ(F ′
1) = µ(F2/E) (otherwise F2 would either have larger

slope than E or it would have the same slope and larger rank). The rest of the
subquotients are:

Fi+1/Fi = F ′
i/F

′
i−1

so the result follows. □

We will need to investigate the behavior of Harder-Narasimhan filtrations of
the fibers of a family of vector bundles, and in particular prove an upper-semi
continuity result to conclude that semi-stability (and stability) is an open condition
on families of vector bundles. But first, we motivate this notion of stability by
investigating the case of Riemann surfaces and the relation between semi-stable
vector bundles of degree zero and (analytic) complex vector bundles with constant
transition functions.
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A Topological Excursion. Let k = C and consider a unitary representation:

ρ : π1(p,Σ) → U(n)

of the topological fundamental group π1(p,Σ) of a non-singular projective curve
C, viewed as a marked Riemann surface p ∈ Σ, retaining only the differentiable
structure of the curve. This defines a complex vector bundle with locally constant
transition functions on Σ which is therefore analytic simultaneously for all complex
curves C, and therefore an algebraic vector bundle (in our sense) for all such curves
C of the same genus, by the GAGA principle of Serre.

In the case of line bundles, we can be very explicit. The space of representations:

ρ : π1(p,Σ) → U(1)

is a torus T 2g. Note that the choice of base point is irrelevant because U(1) is
abelian and changing the base point conjugates ρ by an element of U(1).

On the other hand, the analytic line bundles on C are classified by:

H1(C,O∗
C)

which is computed from the exponential sequence of analytic sheaves:

0 → Z → OC → O∗
C → 0

that give the short exact sequence:

H1(C,OC)/H
1(C,Z) → H1(C,O∗

C)
deg→ H2(Σ,Z) = Z

where H1(C,Z) ⊂ Cg is a lattice. The bundles arising from representations are
analytic bundles of degree zero and conversely since the resulting map:

T 2g → J(C) = H1(C,OC)/H
1(C,Z)

to the Jacobian is a diffeomorphism of tori. Thus the complex structure of C
(enhancing the differentiable surface Σ) provides a complex structure of J(C) that
enhances the differentiable torus T 2g, and every algebraic line bundle of degree zero
on C corresponds to some U(1) representation.

Narasimhan-Seshadri Theorem: Each algebraic vector bundle Vρ associated to
a U(n) representation ρ of π1(p,Σ) has degree 0 and is semi-stable.

Proof. Since ∧nVρ = V∧nρ which is a U(1)-representation, the degree is zero.

The sections of Vρ correspond to trivial sub-representations of ρ and are therefore
trivial summands. In particular, Vρ can have no section vanishing at a point of C.
On the other hand, if Vρ is an unstable vector bundle, then it admits a sub-bundle
F ⊂ Vρ of rank m and positive degree d, and then L = ∧mF ⊂ ∧mVρ = V∧mρ is a
sub-line bundle of positive degree. Tensoring by a suitable U(1)-representation, we
may convert L into any line bundle of degree d > 0. Thus in particular,

OC(D) = L⊗ Lχ ⊂ V∧mρ ⊗ Vχ = V∧mρ⊗χ

for any effective divisor D of degree d with a suitable U(1) representation χ. Since
deg(D) > 0,this would yield a section of V∧mρ⊗χ that vanishes at a point of C,
contradicting the nowhere-vanishing of sections. □

Remark. We will see that Vρ is stable if and only if ρ is irreducible. To do this, we
need to generalize the diffeomorphism T 2g → J(C) to U(n)-representations. That
is, we need a moduli space for (semi)-stable vector bundles on C.
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To Do List for Part Two:

• HN filtration data stratifies the base of a family of vector bundles

• Stable limits of stable families (over a DVR) are unique, if they exist.

• Semi-stable limits of semi-stable families always exist. But....

• Semi-stable bundles (of fixed rank and degree) are bounded.

• Discussion of the construction of moduli....


