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0.2. Schemes. Schemes are well-suited to the study of moduli problems through
their functor of points. The points (in the usual sense) of a scheme X are prime
ideals in a commutative ring, but the functor of points is the contravariant functor:

hX : Schemes → Sets

from the category of schemes to the category of sets defined on objects by:

hX(S) = Mor(S,X) = {µ : S → X}
and on morphisms by:

hX(a : S → T ) = (a∗ : hX(T ) → hX(S))

where a∗ is the pre-composition of morphisms: a∗(ν : T → X) = (ν ◦ a : S → X).

This may seem like a curious definition, until you think about the motivation
coming from the algebraic geometry of varieties defined by polynomials with coeffi-
cients in an arbitrary field k. Grothendieck’s theory of schemes arose in part from
the difficulty the Bourbaki school had with finding a definition of a variety in this
context that captured all solutions to the equations in all field extensions of k.

The spectrum of a field Spec(k) is a one-point scheme equipped with (constant)
functions with values in k. A schemeX defined by a system of polynomial equations
is then a scheme over Spec(k), i.e. X is equipped with a morphism:

π : X → Spec(k)

if the coefficients of the polynomials defining X are in k. On the other hand, the
solution set to the equations in a field extension K of k is:

X(K) := X(Spec(K))

i.e. the set of maps from Spec(K) to X. For example, the scheme associated to
the equation x2 + y2 = 3 is defined over Q but X(Q) = ∅, while X(R) is the set of
points of the circle and X(C) is the Riemann sphere minus two points.

The functor of points hX is functorial in two senses. First, we have:

X(a ◦ b) = X(b) ◦X(a) for b : S → T and a : T → U

establishing that hX is a functor, but also, given a morphism f : X → Y , we have:

f∗ : hX → hY

a natural transformation of functors of points with:

f∗ : hX(S) → hY (S) defined by f∗(µ) = f ◦ µ : S → Y

i.e. post-composition with f , and the map on arrows:

f∗(hX(a))(ν) = f∗(a
∗)(ν) = a ◦ ν ◦ f = a∗(f∗ν) ∈ hY (a)

by the associativity of composition.

Yoneda’s Lemma. Let SchSets be the category of contravariant functors from
schemes to sets (the objects) with natural transformations (the morphisms). Then
h• defined by h•(X) = hX and h•(f) = f∗ is a fully faithful functor. In particular,
a scheme X is determined (up to isomorphism) by its functor of points.
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Notice that this is in contrast with the traditional points of a scheme, which
do not determine the scheme. For example, any two schemes that share the same
reduced scheme structure have identical traditional points.

Definition. A contravariant functor h from schemes to sets is representable if h
is isomorphic to hX for some (unique up to isomorphism) scheme X.

This lemma applies to any category. The reason why the category of schemes
is well-suited to invoking Yoneda’s Lemma is that moduli problems in algebraic
geometry set up well thanks to the existence of fiber products of schemes and flat
families of coherent sheaves.

Affine Schemes are locally ringed spaces Spec(A) for a commutative ring A with
1 consisting of a set of (traditional) points; the prime ideals P ⊂ A with 1 ̸∈ P
together with the Zariski topology with a basis of neighborhoods:

Uf = {P | f ̸∈ P} for f ∈ A

and a sheaf of communtative rings OSpec(A) on Spec(A), the sheaf of regular
functions, determined by the localizations:

OSpec(A)(Uf ) = Af

(at the multiplicative set {1, f, f2, ..., }). The stalks OSpec(A),P ∼= AP of germs of
regular functions are local rings whose maximal ideals obtained by localizing at
the multiplicative set A− P. A morphism of locally ringed spaces is a continuous
map that pulls back regular functions to regular functions and elements of the
maximal ideal to the maximal ideal. Then the category of commutative rings
embeds contravariantly and fully faithfully into the category of locally ringed spaces.

An affine scheme Spec(A) is of finite type over an algebraically closed field k if
A is finitely-generated as an algebra over k, in which case:

(i) The maximal ideals of A are in bijection with the points of a finite union of
closed subvarieties X of affine space An

k for some n.

(ii) The set of (traditional) points of A are in bijection with the closed irreducible
subsets of X in the Zariski topology (the closed subvarieties of X).

(iii) The regular functions on Spec(A) are the regular functions on X augmented
by nilpotent elements (“regular functions” that evaluate to zero at all points!). The
underlying reduced scheme is obtained by setting these nilpotents to zero.

Examples. Two basic examples of particular interest in moduli theory are:

(a) The schemes Spec(A) of finite-type over a field k, where A is an Artinian
local ring, finitely generated as an algebra, and also as a vector space over k. E.g.

Spec(k[x])/⟨x2⟩

the “ring of dual numbers.”

(b) The two-point schemes Spec(A) where A is a Discrete Valuation Ring (DVR)
with fraction field K, maximal ideal m = ⟨π⟩ and residue field k = A/m. E.g.

Spec(k[x]⟨x⟩)

(or the stalk of the sheaf of regular functions at any non-singular point of a curve
over Spec(k)). In this case k ⊂ A, but A is not finitely generated as a k-algebra.
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Projective Schemes (of finite type over k) are locally ringed spaces Proj(R•)
associated to finitely generated graded rings R• over k = R0, which we will assume
for simplicity are generated in degree one, so that:

S = k[x0, ..., xn]• → R•

is a surjective graded ring homomorphism, with choice of basis x0, ..., xn ∈ R1.
This data determines the projective scheme Proj(R•) along with an embedding
Proj(R•) ⊂ Pn

k which, in light of the previous section, means that the given data
must determine a line bundle (invertible sheaf) on Proj(R•). Indeed, the points
of Proj(R•) correspond to homogenous prime ideals P• with P1 ̸= R1, the Zariski
topology has a basis of open sets UF for homogeneous polynomials F ∈ Rd defined
as in the affine case, with sheaf of regular functions defined by letting OProj(R•)(UF )
be the degree zero part of the localization RF of R• at the multiplicative set given
by the powers of F . Each open subset UF is isomorphic (as a locally ringed space) to
Spec(RF ), which shows that Proj(R•) has a (finite) open cover by affine schemes.
The invertible sheaf defining the embedding to projective space is given by the
transition functions xi/xj on the overlaps Uxi

∩ Uxj
.

As in the affine case, the points of a projective scheme (of finite type) over an
algebraically closed field correspond to the closed subvarieties in a finite union X
of closed varieties in Pn, augmented with nilpotent regular functions.

A locally ringed space X with sheaf of regular functions OX is locally affine if
it has an open cover by affine schemes, and Noetherian if the open cover by affine
schemes Spec(Ai) may be chosen to be finite and the rings Ai Noetherian. Such
schemes satisfy Noetherian induction; every descending chain of closed subschemes
eventually stabilizes, where a closed subscheme Z is defined by a sheaf of ideals
IZ ⊂ OX with the property that Ii = IZ(Spec(Ai)) ⊂ Ai are compatible ideals
(necessarily finitely generated) carving out a compatible set of closed subschemes
of the affines in the cover. A morphism of schemes Y → X is a closed embedding
if it factors through an isomorphism with a closed subscheme Z ⊂ X.

Fiber Products. Noetherian schemes over a fixed scheme have fiber products.
That is, if f : X → S and g : Y → S are Noetherian S-schemes, then there is a
Noetherian fiber product X ×S Y with projections:

f̃ : X ×S Y → Y and g̃ : X ×S Y → X

that are uniquely determined morphisms of S-schemes (by the universal property).

Remark. When S = Spec(A), X = Spec(B) and Y = Spec(C) are affine schemes,
then X ×S Y = Spec(B ⊗A C), since the tensor product is the coproduct.

Base Extension. Via the fiber product we get the base extension (change of base)
from S-schemes to T -schemes associated to a morphism T → S via the fiber square:

X ×S T → X

f̃ ↓ f ↓
T → S

Remark. The S-schemes are a category, with morphisms of S-schemes given by
morphisms X → Y that commute with the given morphisms to S. In this context,
base extension by a morphism T → S is a functor from the category of S-schemes
to the category of T -schemes.
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The fiber product is also used to define separated and proper morphisms.

(i) f : X → S is separated if the diagonal morphism:

∆ : X → X ×S X

is a closed embedding of S-schemes.

(ii) f : X → S is proper if it is separated, of finite type, and universally closed.

Remarks. If f : X → S is a morphism of Noetherian schemes, then the preimage
of every open affine subscheme U = Spec(A) ⊂ S is covered by finitely many affine
schemes Vi = Spec(Bi) ⊂ f−1(U) equipped with ring homomorphisms A → Bi.
The morphism is of finite type if each Bi is finitely generated as an A-algebra.
Universally closed means that f : X → S and every base extension of f is closed as
a mapping of topological spaces.

Examples. (a) Every morphism of affine schemes is separated.

(b) The affine line A1
k is not proper, and any variety over k with a non-constant

regular function is therefore also not proper.

(c) f : X → S is projective if it factors through a closed embedding: X ↪→ Pn
S

followed by the projection: Pn
S → S where Pn

S is projective n-space over S. If S is a
scheme defined over k, then Pn

S = Pn
k ×Spec(k) S for projective space over k. More

generally (i.e. in the “mixed characteristic” case) one needs to take the product
with Pn

Z, the projective space over Spec(Z) (a final object in Schemes).

Theorem (Grothendieck) Projective morphisms are (separated and) proper.

Valuative Criteria. The separatedness and properness of finite-type morphisms
f : X → S of Noetherian schemes can be checked by considering only the lifts of
morphisms Spec(A) → S as A varies over all DVRs. Recall that we let K be the
field of fractions of A, and therefore there is an open inclusion Spec(K) ⊂ Spec(A)
(the open point) of schemes, corresponding to the inclusion A ⊂ K. Then f is:

(i) separated if each lift of Spec(K) ⊂ Spec(A) → S to a morphism Spec(K) → X
factors uniquely through a lift Spec(K) ⊂ Spec(A) → X, if the latter lift exists.

(ii) proper if the latter lift exists whenever the former does.

These criteria allow us to assert that moduli problems themselves are separated
(respectively proper), in the sense that if they are represented by a scheme, then
that scheme is separated (respectively proper). This is checked by considering
families over Spec(A) for DVRs A.

Not the Hilbert Scheme. Define a functor h on k-schemes S by:

(i) h(S) = {closed embeddings fS : X ↪→ Pn
S of S-schemes}

(ii) h(a : T → S) = base extension

The k-points h(Spec(k)) are in bijection with the closed subschemes X ⊂ Pn
k as

desired, leading one to believe that this might be a good functor to capture all
closed subschemes of Pn

k , but the families over other schemes S are poorly behaved.
For example, if A is a DVR with k ⊂ A isomorphic to the residue field, then the
closed subscheme XA = Pn

k ⊂ Pn
Spec(A) lives entirely over the closed point. That is,

the base extension of XA to the closed point is Xk = Pn
k , but the base extension

XK to the open point is empty!
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One could fix this by restricting to families XS that are smooth over S, since
this notion is preserved by base extension and indeed this functor is represented
by a separated (and quasi-projective) scheme but its k-points only capture the
non-singular projective subschemes Xk ⊂ Pn

k . They do not, for example, capture
the singular limits of families of non-singular subschemes. Instead, the notion of
a flat family, discussed in the next section, captures all closed subschemes and is
represented by a disjoint union (indexed by the Hilbert polynomial) of projective
schemes over Spec(k). These are the Hilbert schemes.


