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0.1. Introduction to Moduli Spaces. Moduli in algebraic geometry refers to
the continuous variation of geometric objects that are bundled in families, and a
moduli space is a universal base over which such families are sewn together. This
is roughly analogous to the classifying space BG for a topological group G, which
is the base of a universal (and contractible) principal G-bundle EG → BG. This
sews together all principal G-bundles, in the sense that each such G-bundle P → X
is pulled back from the universal bundle via:

P
f̃→ EG

↓ ↓
X

f→ BG

where f is a continuous map (well-defined up to homotopy).

The projective space P(V ) of variable line quotients q : V → L of a fixed vector
space V over a field k is a particularly simple and satisfying example of a moduli
space in algebraic geometry, in which line quotients are bundled into families over
a base scheme S in quotients of the form q : V ⊗k OS → L , where L is a line
bundle and q is a surjective “framing” of L by the trivial vector bundle. All such
families are sewn into the universal quotient (∗) V ⊗OP(V ) → OP(V )(1) over the base
P(V ), which is the (fine) moduli space for bundles of line quotients. In other words,
the data of a family of quotients q is in a natural bijection with the morphisms
f : S → P(V ).

This generalizes to the Grassmannian (variable quotients of V with fixed rank)
and “classical” homogeneous spaces (variable flags of quotients with fixed ranks,
possibly isotropic for a fixed non-degenerate symmetric or skew-symmetric form).
All are smooth projective varieties, equipped with a Plücker embedding. These
are also equipped with the transitive action of a Lie group, which exhibits them as
coset spaces for a (parabolic) subgroup of a Lie group, i.e. homogeneous spaces.

Grothendieck recognized in an astounding series of papers (FGA) that one could
vastly generalize this to the setting of varying coherent sheaf quotients q : V → F of
a fixed coherent sheaf V on a projective variety (or scheme) X. In Grothendieck’s
formulation, theHilbert polynomial of F generalizes the rank of the quotient and
flatness is how to bundle coherent sheaf quotients with fixed Hilbert polynomial.
Grothendieck’s theory of schemes is beautifully suited to moduli problems, and his
Hilbert schemes are the foundation of the modern theory of moduli.

This is particularly interesting when V = OX is the “structure sheaf” of the
projective schemeX, in which case each coherent-sheaf quotient q : OX → OZ is the
structure sheaf of a closed subscheme Z ⊂ X (with the given Hilbert polynomial).
One instance of this is familiar. The Hilbert scheme of hypersurfaces Z ⊂ Pn

in projective n-space is itself the (projective) space of homogeneous polynomials
F (x0, ...., xn) of degree d (which determines the Hilbert polynomial). Once one
passes to codimension two or more, however, the Hilbert schemes are much more
“interesting,” and are typically very complicated projective schemes. Indeed, these
satisfy a “Murphy’s Law”; every pathology of projective schemes of finite type are
on display for suitable Hilbert schemes.
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If we dispense with the framing by V and consider only (flat) families of coherent
sheaves F on a fixed projective scheme X, then we need to deal with the issue of
automorphisms. Already when X is a point scheme (associated to a field k), the
coherent sheaves are finite-dimensional vector spaces over k, and the automorphism
group of F = V is the general linear group G = GL(V, k). In that case, families of
vector spaces over a scheme S are vector bundles (locally free sheaves) E of rank
equal to the dimension of V . There is only one vector space V of a given rank up
to isomorphism, so the moduli space ought to be a point, with universal family V .
On the other hand, the pull-back of V from a constant map is:

V ⊗k OS

the trivial vector bundle, and not all vector bundles are trivial, though they
are all locally trivial. This is a rather serious problem, which relates back to the
example at the very beginning. In this case, the moduli space is the classifying
space (stack) BG, which, in algebraic geometry, is a groupoid: a category with a
single object and arrows corresponding to the elements of the group G. In a very
rough sense, a stack in algebraic geometry is an algebraic gadget whose “points”
are groupoids with arrows constituting the inertia group of the “point”, which are
generally dependent upon the point.

When L is a line, there is a fix that allows the bare point to be the moduli space.
Line bundles are invertible sheaves, so we can introduce an equivalence relation on
families of lines (line bundles) over a scheme S:

L ∼ L⊗A for all line bundles A
This is clearly an equivalence relation, but in fact it has only one equivalence class:
every pair of line bundles on S is equivalent for this relation! Thus up to equivalence
the point with L is the universal family.

This cheap trick becomes much more interesting when we consider families of
line bundles on a variety X. Line bundles are themselves bundled into families over
a base S as line bundles (invertible sheaves) L on the product:

X × S with projections p : X × S → S and q : X × S → S

In this context, the equivalence relation that one takes is:

L ∼ L⊗ q∗A for the pull-back of a line bundle A on S

With this equivalence relation, the moduli space of line bundles on X is the
Picard group Pic(X) and a universal line bundle on X ×Pic(X) (well-defined up
to the equivalence relation!) is called “the” Poincaré line bundle. In fact, the
Picard variety is a group (with tensor product) and the Jacobian is the connected
component Pic0(X) of the identity line bundle OX . This is an abelian variety.

When we pass to vector spaces the trick doesn’t work, since one cannot “undo” a
vector bundle by tensoring with another vector bundle. However, there is an open
class of simple vector bundles E on X whose isomorphism group is GL(1, k), just
as is the case for lines and line bundles. In this case, the equivalence relation:

E ∼ E ⊗ q∗A
is adequate to have a moduli space of simple vector bundles on X. Unfortunately,
this space is usually not Hausdorff (i.e. not separated)! To remedy this, we restrict
further to stable vector bundles, which are analogous to irreducible representations.
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When X = C is a curve (smooth, projective, of genus ≥ 2), we have the following

Theorem (Narasimhan, Seshadri). The moduli space of stable vector bundles
of rank r and degree d on C is smooth and quasi-projective, and projective when
r and d are coprime. When d = 0, there is a bijection (even a diffeormorphism)
between the space of irreducible unitary representations of π1(C) and the moduli
space of stable vector bundles that can be extended to reducible representations
(and polystable vector bundles).

We will study these moduli spaces and some of their intersection theory.

Each projective scheme X of finite type over a field k carries a Chow Group
and an Intersection Ring. The elements of the Chow group (graded by di-
mension) are formal sums of closed subvarieties of X modulo rational equivalence
(analogous to homological equivalence of chains of simplices in singular homology)
and the elements of the intersection ring are the Chern classes of vector bundles
on X, graded by codimension, which operate on the Chow group much as coho-
mology classes operate on homology classes. This enables one to do enumerative
geometry on (projective) moduli spaces. Applications of intersection theory include
the Riemann-Roch Theorems computing Euler characteristics of coherent sheaves
on smooth, projective varieties X, generalized by Grothendieck to the setting of
smooth, projective morphisms of schemes.

We will take up Fulton’s treatment of intersection theory, with a specific view
towards making computations analogous to the Schubert Calculus enumerative
geometry of the Grassmannian Gr(kn, r) of r-dimensional quotients of kn. This
smooth, projective variety of dimension r(n − r) is equipped with the universal
quotient vector bundle:

(∗) On
Gr(V,r) → E

The intersection ring of the Grassmannian is isomorphic to:

I(n, r) = Z[σ1, ...., σr]/⟨
∂W

∂σi
⟩

where the σi are the elementary symmetric polynomials in x1, ..., xr and:

W =
xn+1
1

n+ 1
+ · · ·+ xn+1

r

n+ 1

is a polynomial in σ1, ..., σr since it is symmetric in x1, ..., xr. The isomorphism
is achieved by setting σi = ci(E), the Chern classes of the universal quotient
bundle. In this way the universal quotient directly accounts for all the intersection
theory of the associated moduli space. Moreover, the Chow group is a free abelian
group isomorphic to I(n, r) with a basis of Schubert cycles given by explicit closed
subvarieties of the Grassmannian. This allows one to directly intersect elements of
the Chow group, and yields the following positivity result:

Littlewood-Richardson. Every product of Schubert cycles is a sum of Schubert
cycles with positive integer coefficients determined by a precise combinatorial rule
(on Young tableaux).

Enumerative problems do not set up this nicely on moduli spaces in general.
That’s the fun of it!
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Smooth projective morphisms (in the context of the G-R-R Theorem) are also
how one bundles smooth projective varieties into families over a base scheme. When
a family of non-singular complex projective varieties bundled into a smooth projec-
tive morphism

f : X → S

Each such morphism is a submersion of differential manifolds, and by a theorem
of Ehresmann, the map f is (diffeomorphically) a local fibration. The moduli of
the fibers can therefore be thought of locally on S (in the Euclidean topology) as
a continuously varying family of complex projective manifolds that share the same
underlying differentiable manifold. This is the setting of Hodge Theory.

Any invariant of geometric objects that is constant in families over a connected
base is dubbed a discrete invariant. Moduli is thus a feature of families of geometric
objects with fixed discrete invariants. In the context of moduli of vector bundles on
a curve, the rank and degree of the bundles are the discrete invariants, generalized
in higher dimension to the images of Chern classes in singular cohomology(!).

Dimension is such an invariant for smooth projective morphisms and among the
families of curves (Riemann surfaces) C → S (dimension one), the genus of a curve
is the only other discrete invariant. Recall that the genus of a complex curve is
half the first betti number, which is discrete by the fibration theorem, for example.
For families of projective manifolds of higher dimension, there are more discrete
invariants (e.g. more betti numbers).

Rough Definition of Mg. The moduli space of Riemann surfaces of genus g ≥ 2
is the base of a universal family of complex projective curves of genus g.

(Rhetorical) Question. Why restrict to genus 2 or more?

Genus Zero. The Riemann sphere CP1 is the only Riemann surface of genus zero,
so in a sense the moduli problem is easy to solve: the moduli space of genus zero
curves is a point and the universal family is P1. On the other hand, this does not
capture the non-trivial families of genus zero curves.

The automorphism group PGL(2,C) = Aut(CP1) is responsible for bundles of
projective lines that are locally trivial but globally non-trivial, just as we saw in
the case of families of vector spaces.

A trick to fix the automorphism problem in this context is to rigidify the moduli
problem by adding more information. In the case of genus zero curves, this can be
done by choosing three distinct points p1, p2, p3 ∈ C. Every such marked curve is
uniquely isomorphic to the Riemann sphere CP1 with chosen points 0, 1,∞. In this
case the moduli space is again a point, and every family C → S of genus zero curves
equipped with three distinct section σ1, σ2, σ3 : S → C is uniquely isomorphic to
the trivial family. So in this case, the moduli space is legitimately the single point.

It is very interesting to consider the moduli spaces of genus zero curves with
more points. There are several approaches to this, including applying Geometric
Invariant Theory to collections of points on P1 (for the action of the automor-
phism group) or to go to the Deligne-Mumford compactification to handle what one
does when points collide. But this is just a special case of the Deligne-Mumford
approach to moduli of curves of all genus together with marked points.
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Elliptic Curves. Each genus one curve is a principal homogeneous space over an
elliptic curve that is a group via the choice of an origin e ∈ C. This choice “nearly”
rigidifies the moduli problem, leaving only a finite group of automorphisms. One
can actually tally all the automorphism groups, recalling that every elliptic curve
is (analytically) isomorphic to the quotient of C by a lattice Λ ⊂ C.

• all but two elliptic curves have Aut(C, e) = Z/2Z
• the square lattice elliptic curve has Aut(C, e) = Z/4Z.
• the hexagonal lattice elliptic curve has Aut(C, e) = Z/6Z.
Nevertheless, we may set about looking for a universal family by considering the

following family of genus one curves over S = C− {0, 1} in Legendre normal form:

f : C ⊂ CP2 × S → S defined by the equation y2z = x(x− z)(x− sz)

This is equipped with the section e = (0 : 1 : 0) × S that picks out the origins
of the fiber curves (Cs, es). The Ehresmann fibration theorem in this context is
the observation that the fibers of this family are all (diffeomorphic) tori, and the
moduli is the variation of the cross ratios of the sets {0, 1, s,∞} and {0, 1, λ,∞}.
These four points are the branch points of the map Cλ → CP1; (x : y : z) 7→ (x : z)
with eλ mapping to the point at ∞.

This sets up an action of the symmetric group Σ3 on S, generated by elements:

λ 7→ 1/λ and λ 7→ λ/(1− λ)

of degree two and three, respectively, whose orbits correspond to the sets of elliptic
curves with the same cross ratio. This action is free away from the two orbits:

λ = 2,−1, 1/2 and λ = ω, 1/ω

with stabilizers Z/2Z and Z/3Z that act as automorphisms on the elliptic curves,
which must then correspond to the square lattice and hexagonal lattice quotients
of C! (This also shows that the analytic automorphisms of C/Λ are algebraic.) The
“extra” automorphisms are generated by the involution of Cλ given by the map
y ↔ −y that fixes all the branch points.

In particular, the family C has non-trivial moduli and the quotient space S/Σ3

is a variety (the j-line in the number theory literature) whose points parametrize
each elliptic curve once, i.e. it is a candidate for the moduli space of elliptic curves.
However, as a consequence of the presence of automorphisms, there is no universal
elliptic curve C → S/Σ3, even if S/Σ3 is interpreted as an orbifold (or stack)
quotient of S. The actual moduli stack also accounts for the involutions.

The morals to take from this example are: (1) the moduli of curves of genus g ≥ 1
are extremely interesting and well worth studying, but (2) one has to come to terms
with the presence of finite groups of automorphisms. (Side note: Unlike the curves
of genus 0 and 1, every unmarked Riemann surface of genus 2 or more has only
finitely many automorphisms). The finiteness of automorphism groups means that
the stack approach to moduli is much more closely tied to “ordinary” geometry.
In fact, the moduli stacks of curves (and their Deligne-Mumford compactifications)
are orbifolds.


