
Course Notes for Math 780-1 (Geometric Invariant Theory)

3. The Numerical Criterion, Points in P1 and Descent. Suppose that
G is linearly reductive, that we are given a linearized G action on a projective
varietyX with respect to L, and that x ∈ X is a closed point. The philosophy
behind the numerical criterion is the idea that one can detect whether or not
x is stable by considering the induced (linearized) actions of all the inclusions
Gm ⊂ G. This will yield a very explicit procedure for determining whether
x is stable or not. We will use this procedure in an example to show which
collections of d unordered points on P1 are stable, semistable and unstable
for the obvious linearized action of SL(2), and afterwards we will use brute
force to explicitly describe the quotient in the case d = 4.

Next, we will prove a descent lemma of Kempf, which in particular tells
us which power of L descends to the GIT quotient. This is not an entirely
trivial matter, as one will see from the example of four points on P1.

Definition: A non-trivial map λ : Gm → G is a one-parameter subgroup
(abbreviated 1-PS) of G.

Let x̃ be a lift of x to a non-zero point in X̃, as in §2. If the mor-
phism σx̃ ◦ λ : Gm → X̃ extends to a morphism α : A1 → X̃ then we
write limt→0 λ(t)x̃ = α(0). Otherwise, we will write limt→0 λ(t)x̃ = ∞. The
following definition is clearly independent of the choice of x̃.

Definition: Given a 1-PS λ, the point x is:
(i) λ-stable if limt→0 λ(t)x̃ = ∞.

(ii) λ-semistable if limt→0 λ(t)x̃ ̸= 0. (i.e. the limit is nonzero or ∞.)

(iii) λ-unstable if limt→0 λ(t)x̃ = 0.

Note: Since X is proper, the map σx ◦ λ : Gm → X always extends to a
map from A1 to X. We are saying here that x is λ-stable iff that extension
does not lift to X̃.

Theorem 3A (Hilbert’s Numerical Criterion): Assume G = SL(n)
(but see the note at the end of the proof!)

(a) x ∈ XSS(L) if and only if x is λ-semistable for all 1-PS λ.

(b) x ∈ XS(L) if and only if x is λ-stable for all 1-PS λ.
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Proof: In both parts one direction is relatively easy. Namely, if x is not
λ-semistable for some λ, then 0 is in the closure of the orbit of x̃ under the
action ofGm, hence also under the action of G. So by definition, x /∈ XSS(L).

Similarly, if x is not λ-stable for some λ, then the map σx̃ ◦ λ : Gm → X̃
extends to a map from A1. On the other hand, every representation of Gm

splits into one-dimensional invariant subspaces. So there is a basis for Cn

under which the image of Gm has the form:

diag{tr1 , ..., trn} :=



tr1 0
tr2

. . .

trn−1

0 trn


with

∑
ri = 0. Since some ri ̸= 0, the map λ : Gm → G clearly cannot be

extended to A1, and so σx̃ : G→ X̃ cannot be proper, and x /∈ XS(L).

To get the converses, we need to use the valuative criterion. That is, if
we let O = C[[t]] be the ring of formal-power series and K = C((t)) be the
field of fractions of O, then the valuative criterion tells us:

(a) σx̃ : G → X̃ is not proper iff there is a morphism α : Spec(K) → G
such that σx̃ ◦ α extends to a morphism σx̃ ◦ α : Spec(O) → X̃, but α does
not extend across Spec(O).

(b) 0 is in the closure of σx(G) iff there is a morphism α as above, where
the closed point of Spec(O) is sent to 0 under σx̃ ◦ α.

So suppose x is not stable. Let α be the map whose existence is guaran-
teed by (a). Such a map is equivalent to an element of SL(n,K), that is, to
a matrix M(t) whose entries are rational power series in t. By the theory of
elementary divisors (i.e. by row and column operations!) there are matrices
A(t) and B(t) in SL(n,O) such that:

A(t)M(t)B(t) = diag{tr1 , ..., trn}

where necessarily
∑n

i=1 ri = 0 and because α did not extend, some ri is
nonzero. Moreover, since our choice of basis of Cn was arbitrary, we may fix
it by assuming that B(0) is the identity.
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Now, we define the 1-PS λ by the requirement that λ(t) = diag{tr1 , ..., trn}
with respect to this basis for Cn. That is, A(t)M(t)B(t) = λ(t). We claim
that limt→0 λ(t)x̃ ̸= ∞.

The action of G on the affine cone X̃ ⊂ AN+1 is induced by a linear
action of G on V := Γ(X,L)∗ by definition, so the action of our 1-PS λ
on V diagonalizes. Let e0, ..., eN be a basis for V with the property that
λ(t)ei = tsiei with s0 ≤ ... ≤ sN . Since B(0) is the identity, if we let b̂i,j(t)
be the (rational power series) entries of the induced action of B−1(t) on V
with respect to this basis, then in particular, b̂i,j(0) = δi,j.

Then if we write x̃ =
∑
xiei, we have:

A(t)M(t)x̃ =
∑

i xiA(t)M(t)ei =
∑

i xiλ(t)B
−1(t)ei

=
∑

i

(∑
j b̂i,j(t)xj

)
λ(t)ei =

∑
i

(∑
j b̂i,j(t)xj

)
tsiei

By assumption, this has a finite limit as t → 0, but since b̂i,j(0) = δi,j, this
implies that xi = 0 if si < 0, which is to say that x̃ is not λ-stable(!)

If in addition limt→0M(t)x̃ = 0, then in the previous paragraph, xi = 0 if
si ≤ 0, and x̃ is not λ-semistable. This completes the proof of Theorem 3A.

Remark: In the proof, the theory of elementary divisors was used to show
that given M ∈ SL(n,K), there are elements A,B ∈ SL(n,O) such that
AMB is a 1-PS. This was the only place in the proof where we used the
fact that G = SL(n,C), as opposed to any linearly reductive group. Iwa-
hori’s Theorem says that this is also true for any linearly reductive G, so the
numerical criterion always applies.

The following example classically went under the catchy title of “binary
quantics”.

Points on P1: Consider the symmetric action σ : SL(2)×Pd → Pd coming
from the isomorphism Symd(P1) ∼= Pd. If we let V ∼= C2, then σ this is
naturally linearized by the action σ̃ : SL(V )× Symd(V ∗) → Symd(V ∗). The
numerical criterion immediately gives the stable and semi-stable points of
this action.

Suppose λ is a 1-PS, and X0, X1 is a basis for V ∗ with respect to which
λ(t) = diag{t−r, tr}. Then via λ,Gm acts on the monmialsMd−i,i := Xd−i

0 X i
1

by Md−i,i 7→ tr(2i−d).
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Thus the polynomial P (X0, X1) =
∑
aiX

d−i
0 X i

1 ̸= 0 lies over a λ-semistable
point of Pd if and only if ai ̸= 0 for some i ≤ d

2
, that is, if and only if X1 is

a root of order at most d
2
. The polynomial P lies over a λ-stable point of Pd

if and only if X1 is a root of order strictly less than d
2
.

Therefore by the numerical criterion, P (X0, X1) lies over a semistable
point ofPd if and only if every root of P has multiplicity at most d

2
. P (X0, X1)

lies over a stable point if and only if every root of P has multiplicity strictly
less than d

2
.

Suppose that d is even, so (Pd)S ̸= (Pd)SS. Then I claim that there is a
unique closed orbit in (Pd)SS−(Pd)S. Indeed, if X1 is a root of order exactly
d
2
of P (X0, X1), then via the 1-PS λ defined above, we see that a d

2
X

d
2
0 X

d
2
1 is in

the closure of the orbit of P (X0, X1). Since SL(V ) acts transitively on pairs
of points, it is easy to see that the orbit corresponding to a pairs of points of
multiplicity d

2
is the unique closed orbit which is semistable but not stable.

Four Points on P1: You are certainly already familiar with the GIT quo-
tient of P1 ×P1 ×P1 ×P1 by SL(2) with respect to O(1, 1, 1, 1) (!)

Given four ordered points z1, z2, z3, z4 ∈ C, recall that the cross-ratio
(z4−z1)(z3−z2)
(z4−z2)(z3−z1)

yields a rational map C4−−> C which is constant on the orbits

of the action of PGL(1). We can projectivize the cross-ratio to get a rational
map:

ϕ : (P1)4 −−> P1

((z1, w1), ..., (z4, w4)) 7→ ((z4w1−z1w4)(z3w2−z2w3), (z4w2−z2w4)(z3w1−z1w3))

which is constant on the orbits of the action of PGL(1), and defined precisely
on the locus where no three of the points of P1 coincide.

On the other hand, the same analysis as above shows that the semi-stable
points of the action of SL(2) on (P1)4 are precisely those where no three
points coincide. It is then immediate that ϕ is the quotient coming from
GIT.

Notice that if we let F = (z4w1 − z1w4)(z3w2 − z2w3) and if we let G =
(z4w2 − z2w4)(z3w1 − z1w3), then both F and G are invariant under SL(2),
and the target P1 is canonically isomorphic to Proj[F,G], and therefore,
finally, ϕ∗O(1) = O(1, 1, 1, 1).

Now, let’s turn to four unordered points.
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If ψ : P4 − −> C is the GIT quotient, then from the example of four
ordered points, it follows that P1 maps onto C, so C is rational. In order to
find the map ψ, we are looking for homogeneous polynomials in (a0, ..., a4)
which are invariant under the action of SL(2) on P (X0, X1). Unlike the
previous example, one can check that there are no linear invariants. In fact:

Claim: If OP4(d) = ψ∗(A), then 6|d.
Proof: Consider the point x ∈ P4 determined by P (X0, X1) = (X0 −

X1)(X0 − ωX1)(X0 − ω2X1)X1 where ω is a cube root of unity. Then the
element diag{ω, ω2} ∈ SL(2) fixes x but acts by multiplication by ω2 on
P (X0, X1).

Now if OP4(d) = ψ∗(A), then because it is a pullback from the quotient,
SL(2) must act trivially on OP4(d). Thus, this example shows that 3|d.
Similarly, one shows that 2|d by considering the appropriate element of SL(2)
acting on P (X0, X1) = (X0−X1)(X0−iX1)(X0+X1)(X0+iX1). (You should
convince yourself that this does not give 4|d, as you might naively expect!)

On the other hand, the wonderful nineteenth century mathematicians
discovered (and this is really what the study of binary quantics is all about)
that the two homogeneous polynomials:

F = 1
6
(a22 − 3a1a3 + 12a0a4) and

G = a0a2a4 − 3
8
a0a

2
3 − 3

8
a21a4 +

1
8
a1a2a3 − 1

36
a32

generate the full ring of invariants. One should check that (as must be the
case!) F and G determine the locus where there is a zero of multiplicity
three, and that the discriminant D, which is, after all, another invariant, is
expressible as D = α(P 3 − 6Q2), where α ∈ C. (See Mumford’s article in
“Algebraic Geometry, Oslo 1970” if you are lazy.)

But now, we see that ψ maps to P1 = Proj[F,G] = Proj[F 3, G2]
by ψ(a0, ..., a4) = (F 3(a0, ..., a4), G

2(a0, ..., a4)), so C = P1, and OP4(6) =
ψ∗(OP1(1)). (Notice that the unique non-stable point is where the discrimi-
nant vanishes, namely the point (6, 1) ∈ P1.)

In light of this last example, it seems worthwhile to find a general proce-
dure for determining which twist of L descends to the GIT quotient under
a linearized G-action. This will follow from Kempf’s descent lemma, which
(surprisingly!) seems to only recently have been proved in the form given
here by Drezet and Narasimhan:
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Definition: A vector bundle F of rank r on X is a G-bundle if a linear lift
to F of the action of G on X is understood. A map σ̃ : G × F → F is a
linear lift of σ if, for all x ∈ X, t ∈ Fx, and A ∈ GL(r), σ̃(g, t) ∈ Fσ(g,x), and
σ̃(g, At) = Aσ̃(g, t).

Example: The linearization of a G-action on X is equivalent to regarding L
as a G-bundle. Of course the latter has the advantage of making sense even
when L is not very ample(!) In fact, GIT and the numerical criterion apply
to linearizations of G-actions for any ample (even big and nef?) line bundle.
One finds that if L = L⊗d

0 , and G is linearlized with respect to L by the dth
tensor of the linearization with respect to L0, then the GIT quotients are the
same.

Definition: A G-bundle F descends to the GIT quotient of X under a
linearized G-action if the restriction of F to XSS(L) is isomorphic as G-
bundle to the pull-back of a vector bundle on the quotient.

Suppose X is a projective variety acted upon by G, a linearly reductive
group, suppose the action is linearized with respect to an ample line bundle
L, and suppose that F is a G-bundle. Let ϕ : XSS(L) → Y be the GIT
quotient associated to the inclusion RG ⊂ R, as in §2. Then:

(Kempf’s Descent Lemma) Theorem 3B: F descends to a vector bundle
on the GIT quotient of X if and only if the stabilizer of x acts trivially on
Fx for every x ∈ XSS(L) such that O(x) is closed.

Proof: If F descends, then it is clear that Gx acts trivially on Fx. To
prove the converse, it suffices to find, for each y ∈ Y , an affine neighborhood
V0 of y, and r G-invariant sections t1, ..., tr spanning F |ϕ−1(V0).

Fix y ∈ Y a closed point.

Step 1: If x ∈ ϕ−1(y) is a closed point such that O(x) is closed, then
there are r G-invariant sections of F |O(x) which span Fgx for every g ∈ G.
Indeed, since we assumed that Gx acts trivially on Fx, we can translate a
basis for Fx by G to obtain the desired sections.

Step 2: Let V = D(f) for f ∈ Proj(RG) be an affine neighborhood of y.
Then π−1(V ) = D(f) ⊂ X is also affine. We claim that there is a Reynolds
operator E : H0(ϕ−1(V ), F ) → H0(ϕ−1(V ), F )G. To see this, by Lemma 1.1
it suffices to show that G acts rationally on H0(ϕ−1(V ), F )). But if we choose
an affine, dense U ⊂ π−1(V ) on which F trivializes, then an s ∈ H0(U, F )
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gives rise to a regular function h : G×U → Cr defined by (g, x) 7→ gs(g−1x).
Then if G = Spec(A) and U = Spec(B), we have h =

∑
ai⊗bi, where ai ∈ A

and bi : U → Cr, and Gs|U is contained in the span,W , of the bi. Since the
restriction of sections from ϕ−1(V ) to U is injective, we prove rationality by
intersecting W with H0(ϕ−1(V ), F ).

Step 3: Take the sections s1, ..., sr spanning F |O(x) from Step 1 and
extend them to sections s1, ..., sr of F |ϕ−1(V ), which is possible since this
is affine. Apply the Reynolds operator of Step 2 to get invariant sections
t1, ..., tr, which by Lemma 1.1 still restrict to s1, ..., sr on O(x). Finally,
consider the closed invariant subset Z ⊂ ϕ−1(V ) where t1, ..., tr fail to span
F . The image ϕ(Z) ⊂ V is closed and proper, since it does not contain
ϕ(x), so we can shrink V to an affine V0 for which t1, ..., tr have the desired
properties.
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