
Course Notes for Math 780-1 (Geometric Invariant Theory)

2. Quotients, Orbits and GIT.

The Affine Case

Suppose that a group G acts on an affine variety X. We want to know
when a “good” affine quotient exists. In light of the previous section, we
should take G to be (linearly) reductive, but even more, if we want the
quotient to correspond to our intuitive notion of a quotient, for example,
with each fiber corresponding to a single closed orbit, then we may have to
restrict the action of G to an open subset of X. We begin with Mumford’s
definition of the best possible quotient.

Definition: A pair Y and ϕ : X → Y is a geometric quotient of the action
of G on a quasiprojective variety X if Y is quasiprojective, ϕ is a morphism,
and:

(i) ϕ is surjective, and for each closed point y ∈ Y , the fiber ϕ−1(y) is a
single closed orbit.

(ii) For each invariant open subset U ⊂ X, there is an open subset V ⊂ Y
such that U = ϕ−1(V ).

(iii) For each open subset V ⊂ Y , ϕ∗ : Γ(V,OY ) → Γ(ϕ−1(V ),OX) is an
isomorphism onto the subring of invariants Γ(ϕ−1(V ),OX)

G.

Consider the action of SL(W ) on Akr ∼= Hom(V,W ) of the introduction.
Since 0 is in the closure of the orbit of every non-surjective map, it is imme-
diate that no geometric quotient can exist. (After all, fibers of a morphism
are closed!) On the other hand, the orbits corresponding to surjective homo-
morphisms are closed with trivial stabilizer, and the union of all such is an
open subvariety of Akr. This is a model for the following definition:

Definition: If x ∈ X is a closed point, then the orbit, O(x), of the action
of G on X is stable if:

(i) O(x) is closed, and

(ii) the stabilizer, Gx, of x, is finite.

1



This doesn’t quite correspond to Mumford’s notion of stability in GIT,
but it is easier to work with in part because of the following useful equivalent
condition for stability.

Lemma 2.1: If G is a linear group acting on an affine variety X, then the
orbit of a closed point x is stable if and only if the induced map σx : G→ X
is proper.

Proof: If σx is proper, then of course O(x) is closed, and the stabilizer
Gx = σ−1

x (x) is complete and affine (G is affine!), hence finite.
On the other hand, if O(x) is closed, then to prove properness of σx, it

suffices to show that σx : G → O(x) is a finite morphism. Since the fibers
are finite, this is easy to check generically, that is, for the restriction of σx
to σ−1

x (U) for some non-empty open subset U ⊂ O(x) (is this an exercise in
Hartshorne?). Translation of U by elements of G then shows that σx is finite
everywhere.

Now, suppose that G is a linearly reductive group acting on an affine
variety X. Let R = Γ(X,OX), and since G acts rationally on R, the ring of
invariants RG is finitely generated, by Theorem 1A. Let Y = Spec(RG), and
let ϕ : X → Y be the dominant morphism induced by the inclusion of rings:
RG ⊂ R. Then we have the:

(Affine GIT) Theorem 2A: The morphism ϕ has the following properties:

(a) ϕ is surjective.

(b) If x and x′ are closed points of X, then ϕ(x) = ϕ(x′) if and only if
the closure of their orbits has nonempty intersection.

(c) For each closed point y ∈ Y , the fiber ϕ−1(y) contains a unique closed
orbit (but potentially many orbits that are not closed!).

(d) There is an invariant open subset XS ⊂ X such that x ∈ XS if and
only if O(x) is a stable orbit. Then Y S := ϕ(XS) is open in Y , and the pair
Y S, together with ϕ|XS : XS → Y S is a geometric quotient of the action of
G on XS.

Proof: We start with a geometric version of Corollary 1.4. Namely,
suppose that (Zi) is a family of closed, invariant subsets of X. Then by
Corollary 1.4,

ϕ(∩iZi) = ∩iϕ(Zi).
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Suppose that Z ⊂ X is closed and invariant, and y ∈ ϕ(Z) is a closed
point. Then ϕ−1(y) is also closed and invariant, so

ϕ(Z ∩ ϕ−1(y)) = ϕ(Z) ∩ {y} = {y}

and Z ∩ ϕ−1(y) ̸= ∅ implies that y ∈ ϕ(Z), so ϕ(Z) is closed.

Parts (a) and (b) of the theorem now follow immediately. The map ϕ :
X → Y is dominant, so since ϕ(X) is closed, it must be all of Y , and we have
(a). If ϕ(x) = ϕ(x′) = y, then ϕ(O(x) ∩O(x′)) = ϕ(O(x)) ∩ ϕ(O(x′)) = {y},
so O(x) ∩O(x′) ̸= ∅. This gives (b).

Suppose O(x) is an orbit of minimal dimension. The complement Z :=
O(x) − O(x) is invariant, of smaller dimension, so if x′ ∈ Z, then its orbit
would have smaller dimension, contradicting minimality. So O(x) is closed.
Uniqueness follows immediately from (b).

Consider the morphism Ψ = (σ, id) : G × X → X × X where σ is the
group action. If (x, x) is a closed point in the diagonal, the fiber Ψ−1(x, x)
is isomorphic to the stabilizer Gx. Moreover, there is a section of Ψ over the
diagonal given by (x, x) 7→ (1, x). Thus we can apply uppersemicontinuity
at the section, and because the fibers are groups, hence equidimensional, we
have:

Xreg := {x ∈ X|Gx is of minimal dimension}
is invariant and open in X.

If the minimal dimension of Gx is positive, there is nothing to prove. If
there exist points with finite stabilizers, then Y S = Y − ϕ(X − Xreg) and
XS = ϕ−1(Y S), so Y S is open in Y , and XS is open in X.

Finally, we need to prove that the map ϕ : XS → Y S is a geometric
quotient. Property (i) is immediate from (a). For property (ii), suppose
U ⊂ XS is open and invariant. Then Z = X − U is closed and invariant,
so ϕ(Z) is closed in Y . Let V = Y S − ϕ(Z). Then ϕ|−1

XS(V ) ⊂ U , but if
x ∈ U , then O(x) is closed and invariant, in XS, and Z ∩ O(x) = ∅, so
ϕ(x) ∈ V . This gives (ii). Finally, suppose that V = D(f) is the open affine
subset of Y defined by the nonvanishing of f ∈ RG. Then Γ(V,OY ) = RG

f ,
and Γ(ϕ−1(V ),OX) = Rf . But it is a simple consequence of the Reynolds
identity (Corollary 1.2) that RG

f is the ring of invariants of Rf . Property (iii)
follows.
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The Projective Case

Suppose that X is a projective variety, and that L is a very ample line
bundle on X. Suppose that G acts on X and fixes the bundle L, and that
the action of G is lifted to the total space of L. By this I mean that there
is an action of G on the affine cone X̃ over the embedding of X by the
complete linear series, which descends to the action on X, and such that the
lift commutes with multiplication by scalars. If we let R denote the (graded)
image of

∑
Γ(X,L)⊗d in

∑
Γ(X,L⊗d) under the multiplication, then there is

an induced action of G on R.

We will use the lifted action of G (which is called a linearization of the
action of G in the literature) to produce a quotient of X by the action of G.
By restricting to stable orbits (to be defined!), we may produce a geometric
quotient, as in the affine case. However, such a quotient will often not be
projective. If we insist that our quotient be a projective scheme (which is of
obvious interest in our applications to moduli questions!), we will have to be
satisfied with a weaker notion of a quotient.

Definition: If G acts on a quasiprojective variety X, then a categorical
quotient of X by the action of G is a pair consisting of a quasiprojective Y
and a surjective morphism ϕ : X → Y satisfying:

(i) ϕ is constant on the orbits of the closed points of X.

(ii) Given a variety T and a morphism ψ : X → T which satisfies (i),
then there is a unique morphism κ : Y → T such that ψ = κ ◦ ϕ.

It is immediate that a categorical quotient is unique. The following cri-
terion is useful for detecting categorical quotients:

Lemma 2.2: If G acts on X, and ϕ : X → Y is a morphism which is
constant on orbits, then it is a categorical quotient if:

(i) For all open V ⊂ Y , ϕ∗(Γ(V,OY )) = Γ(ϕ−1(V ),OX)
G, and

(ii) If Z ⊂ X is invariant and closed, then ϕ(Z) is closed. If (Zi)i∈I is a
set of invariant closed subsets of X, then

ϕ(
⋂
i∈I
Zi) =

⋂
i∈I
ϕ(Zi)
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Proof: (i) implies ϕ is dominant, so (ii) implies it is surjective. Suppose
that ψ : X → T is constant on orbits. We need to construct κ : Y → T .
Choose an affine open cover {Wi} of T , and let Zi = X − ψ−1(Wi). These
are closed and invariant in X, so by (ii), Vi = Y − ϕ(Zi) are open, and
ϕ−1(Vi) ⊂ ψ−1(Wi). Since {Wi} is an open cover of T , it follows that ∩Zi = ∅,
so by (ii), ∩ϕ(Zi) = ∅, so {Vi} is an open cover of Y .

If κ : Y → T satisfies ψ = κ ◦ ϕ, then we must have κ(Vi) ⊂ Wi for all
i, so the restriction of κ to each Vi is determined by a ring homomorphism
fi : Γ(Wi,OT ) → Γ(Vi,OY ). But by property (ii), Γ(Vi,OY ) injects as the
invariant subring of Γ(ϕ−1(Vi),OX), which contains the invariant subring of
Γ(ψ−1(Wi),OX), so the fi are uniquely determined by the requirement that
ψ = κ ◦ ϕ. Thus the resulting maps from Vi to Wi are uniquely defined, and
glue together to give κ.

Corollary 2.3: A geometric quotient is a categorical quotient. Hence in
particular, geometric quotients are unique.

Proof: A geometric quotient satisfies the conditions of the lemma.

Corollary 2.4: The morphism ϕ : X → Y of affine varieties in Theorem 2A
is a categorical quotient.

Proof: In the proof of Theorem 2A, we verified all the conditions of the
lemma for ϕ : X → Y .

Let us return to the action of G on X linearized with respect to the very
ample line bundle L. If x ∈ X is a closed point, then we let x̃ ∈ X̃ denote a
nonzero lift of x to the affine cone. The following definitions are easily seen
to be independent of the choice of lift:

Definition: (i) x ∈ X is unstable (with respect to the linearization) if
0 ∈ O(x̃). Let XU(L) ⊂ X be the set of unstable points.

(ii) x ∈ X is semistable if x /∈ XU(L). Let XSS(L) = X −XU(L).

(iii) x ∈ X is stable if O(x̃) is closed with finite stabilizer. If x is stable,
it is obviously semistable. Let XS(L) ⊂ XSS(L) ⊂ X be the set of stable
points.

If G is linearly reductive in the above discussion, then the ring of invari-
ants RG is a finitely generated (Theorem 1A again!) sub-graded ring of R,
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so we can construct the projective scheme Y = Proj(RG), and rational map
ϕ : X −−> Y coming from the inclusion RG ⊂ R. Then:

(Projective GIT) Theorem 2P: The map ϕ has the following properties:

(i) ϕ is defined on XSS(L), and is surjective.

(ii) ϕ : XSS(L) → Y is a categorical quotient.

(iii) The image Y S := ϕ(XS(L)) is open in Y , and ϕ : XS(L) → Y S is a
geometric quotient.

(iv) For x and x′ in XSS(L), ϕ(x) = ϕ(x′) if and only if O(x) ∩ O(x′) ∩
XSS(L) ̸= ∅.

(v) If Z ⊂ XSS(L) is closed and invariant, then ϕ(Z) ⊂ Y is closed.

Proof: Consider the closed invariant subset Z ⊂ X defined by the vanish-
ing of the invariant sections in the image of the multiplication Γ(X,L)⊗d →
Γ(X,L⊗d). If we consider the action of G on the affine cone X̃, then it follows
from part (b) of Theorem 2A that Z = XU(L). So we have (a).

The affine open sets D(f) for invariant f in R are an open cover of
XSS(L). But each such open set is invariant, and moreover the restriction of
ϕ to D(f) is precisely the affine GIT quotient of Theorem 2A associated to
the inclusion (RG)f ⊂ Rf (Reynolds identity again!). As with Corollary 2.4,
part (ii) now follows from Lemma 2.2 and the proof of Theorem 2A, since
the conditions of the lemma are all checkable locally on Y .

Similarly part (iii) follows from the local statement on Y , provided we
can show that if x ∈ XS(L), then for every f not vanishing at x, x ∈ D(f)
has a closed orbit with finite stabilizer. But if the orbit of x̃ is closed in X̃,
then for any other y ∈ D(f) and nonzero lift ỹ, there is an element of RG

vanishing on x̃, but not on ỹ, by the affine GIT. But this element localizes to
separate x and y in D(f), so O(x) is closed. The stabilizer of O(x) cannot
be infinite, since O(x̃) → O(x) has finite fibers, so x ∈ D(f) is stable.

Finally, (iv) and (v) follow from the local versions on Y , which have
already been proved.

Suppose C is a smooth curve, p ∈ C is a closed point, and f : C − p →
XSS(L). Then the completion of the map to f : C → X may send p to
XU(L). However, we have the following corollary of Theorem 2P:
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Corollary (Semi-Stable Replacement Property): There is a (possibly
not projective!) curve C ′, maps π : C ′ → C, h : C ′ − π−1(p) → G, and a
point q ∈ π−1(p) such that the completion of the map:

f ′ : C ′ − π−1(p) → XSS(L) defined by f ′(x) = h(x)f(π(x))

sends q to XSS(L).

Proof: Since ϕ(XSS(L)) is projective, we can always complete the map
ϕ ◦ f : C → Y to get the image of a semi-stable point as the image of p. We
want to factor the completed map ϕ ◦ f through XSS(L). Consider the image
V := σ(G × C − p) in XSS(L). The closure of V is closed and invariant in
XSS(L), therefore its image in Y is closed, so it contains ϕ(f(p)). Let x ∈ V
be a point lying over ϕ(f(p)). There must be a curve S and q ∈ S such
that S − q ⊂ G × C − p and lims→q σ(s) = x (Hartshorne?). But now the
projection of S− q to C − p is nonconstant (!) and indeed completes to take
q to p. So we are done.

Note: In the corollary, we can always arrange it so that f ′(q) is in the unique
closed orbit over ϕ(f(p)).
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