
Course Notes for Math 780-1 (Geometric Invariant Theory)

1. Hilbert’s Fourteenth Problem. Throughout the course, G will denote
a linear group over C, that is, a closed (hence affine) subgroup of GL(N,C).
(Indeed, we will be taking G = SL(N,C) in virtually all the examples!)

If G acts algebraically on a vector space V of dimension n over C (that is,
if the induced ρ : G → GL(V ) is a morphism), then G acts on the polynomial
ring Sym(V ∗) ∼= C[x1, ..., xn], and we will denote by C[x1, ..., xn]

G the ring
of polynomials left invariant under the G-action.

More generally, if G acts on a k-algebra R by k-algebra automorphisms,
then we denote by RG the subring of invariant elements, and make the fol-
lowing definition:

Definition: The action of G on R is rational if every element of R is con-
tained in a finite-dimensional subspace which is invariant under G, and on
which G acts algebraically.

In particular, the induced action of G on C[x1, .., xn] above is rational.
But more generally, if X = Spec(R) is any affine variety, and σ∗ : R → S⊗R
is the dual action to an action σ : G × X → X, then for any r ∈ R,
write σ∗(r) =

∑
si ⊗ ri. Then the vector space spanned by the ri is finite

dimensional, and contains the invariant vector space spanned by Gr. So the
action is rational.

The starting point for GIT is the finite-generatedness of rings of invariant
elements, so it seems only fitting to introduce:

Hilbert’s Fourteenth Problem: IfG acts rationally on a finitely generated
k-algebra R, then is the subring RG also finitely generated?

Notes: Hilbert had already proved this for G = SL(n,C), embedded in
GL(N,C) by a symmetric power of the standard representation.

Actually, it seems Hilbert thought this question had already been an-
swered in the affirmative, so he really proposed a more general question!

Nagata’s Answer: The answer is no, as stated. (See, e.g., Dieudonné and
Carrell for Nagata’s counterexample.) More assumptions are needed on G.

Definition: G is linearly reductive if for every finite-dimensional representa-
tion ρ : G → GL(V ) and every subspaceW ⊂ V invariant under the action of
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G, there is a (complementary) invariant subspace W ′ such that V = W⊕W ′.
(That is, every algebraic action of G is completely reducible.)

The following theorems date back to Weyl.

Theorem 1A: If G is linearly reductive, acting rationally on a finitely gen-
erated k-algebra R, then RG is finitely generated.

The main tool in the proof of Theorem 1A is the existence and properties
of the Reynolds operator:

Lemma 1.1: If G is linearly reductive and acts rationally on a k-vector space
V (i.e. every v ∈ V is contained in a finite-dimensional invariant subspace
on which G acts algebraically), let V G be the subspace of invariant vectors.

Then there is a uniquely defined linear operator E : V → V projecting V
onto V G. This is called the Reynolds operator.

Moreover, if u : V → V ′ is a G-linear map of vector spaces on which G
acts rationally, then the Reynolds operators for V and V ′ commute with u.

Proof: If v ∈ V is not invariant, let W be a finite-dimensional invariant
subspace containing v, and decompose W = WG ⊕WG by the linear reduc-
tivity of G. Then v ∈ WG, so WG is nonempty, invariant and WG ∩ V G = ∅.
So Zorn’s lemma applies to the set of invariant subspaces T ⊂ V with
T ∩ V G = ∅. Let VG be a maximal such.

Some mucking around (exercise!) shows that VG is uniquely determined
by this property and that V G ⊕ VG = V . Thus, the Reynolds operator E is
uniquely defined by the property that has VG as its kernel and fixes V G.

Let E ′ be the Reynolds operator for V ′ and E be the Reynolds operator for
V . In order to show that E ′◦u = u◦E, it suffices to show that u(V G) ⊂ (V ′)G

and u(VG) ⊂ (V ′)G. The first inclusion is obvious. For the second, suppose
that v ∈ VG, and let W be a finite-dimensional invariant subspace of VG

containing v. Then W ∩ ker(u) is invariant, so by linear reductivity we can
decompose W = (W ∩ ker(u)) ⊕ W ′ where W ′ is invariant. But now u
maps W ′ isomorphically onto u(W ′) = u(W ), hence u(W ) is invariant and
u(W ) ∩ (V ′)G = 0, so u(W ) ⊂ (V ′)G, so u(v) ∈ (V ′)G, as desired.

Corollary 1.2: If the G-linear map in the Lemma is surjective, then the
induced map uG : V G → (V ′)G is also surjective.
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Proof: By the lemma,

(V ′)G = E ′(V ′) = E ′(u(V )) = u(E(V )) = u(V G)

Corollary 1.3 (The Reynolds Identity): If G is linearly reductive and
acts rationally on the k-algebra R (hence on the k-vector space R), then for
all x ∈ RG and y ∈ R, we have:

E(xy) = xE(y)

Proof: The map y 7→ xy is a G-linear automorphism of the vector space
R, so the Lemma applies.

Corollary 1.4: If G is linearly reductive, acting rationally on the k-algebra
R, and if (Ii) is a family of invariant ideals in R, then

(
∑
i

Ii) ∩RG =
∑
i

(Ii ∩RG)

Proof: Thinking of Ii as a subspace of R on which G acts, it follows from
the Lemma that the restriction of the Reynolds operator from R coincides
with the Reynolds operator on Ii. In particular, E(fi) ∈ Ii ∩ RG for all
fi ∈ Ii. So if f ∈ (

∑
Ii)∩RG, then f =

∑
fi is a finite sum, with fi ∈ Ii, and

f = E(f) =
∑
i

E(fi) ∈
∑
i

(Ii ∩RG).

The other inclusion is obvious.

Corollary 1.4 will be used in the next section.

Proof of Theorem 1A: Let f1, ..., fr be generators of R, and let V be
a finite-dimensional invariant subspace containing the generators (which is
guaranteed to exist since the action is rational). Then under the induced
action of G on S = Sym(V ), the surjective map u : S → R commutes with
the action of G. By Corollary 1.2, the induced map uG : SG → RG is also
surjective. Thus it suffices to prove the theorem for the action of G the
symmetric algebra S.
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Since this action of G on S preserves degrees, the ring of invariants SG

is graded. Say SG =
∑

d≥0 S
G
d , and let I be the ideal in S generated by the

positive-degree invariants
∑

d>0 S
G
d . Then I is finitely generated over S, and

the generators M1, ...,Mm may of course be taken to be homogeneous and
invariant.

We claim that 1,M1, ...,Mm generate SG as a k-algebra. Indeed, by in-
duction (the case d = 0 being trivial), we may assume that 1,M1, ...,Mm

generate SG in degree less than d. If P is homogeneous of degree d, we can
write P =

∑
QiMi, for Qi ∈ S. and by Corollary 1.3, we have

P = R(P ) =
∑

R(Qi)Mi

Since the degrees of the R(Qi) are all smaller than d, they are in the algebra
generated by 1,M1, ...,Mm, and we are done.

Theorem 1B: SL(N,C) is linearly reductive.

Proof: (This is known as Weyl’s unitary trick.) First observe that
the special unitary group SU(N) ⊂ SL(N,C) is linearly reductive. This
is basically because SU(N) is compact. Indeed, if SU(N) acts on a finite-
dimensional vector space V , then choose a positive definite Hermitian inner
product h on V . Since SU(N) is compact, we can average h over it to pro-
duce an SU(N)-invariant positive definite Hermitian inner product H on V .
But now if W ⊂ V is an invariant subspace, then the orthogonal complement
of W with respect to H is also invariant, and so SU(N) is linearly reductive.

Next, observe that SU(N) is Zariski dense in SL(N,C). Indeed, the
Zariski tangent space to SU(N) consists of the traceless matrices A satisfying
A = −At. The complex span of these is all traceless matrices, so the tangent
space to the Zariski closure of SU(N) at the origin fills the tangent space to
SL(N,C), and so they coincide.

SupposeW ⊂ V is SU(N)-invariant. Then the stabilizer ofW in SL(N,C)
is Zariski closed, and contains SU(N), so it must be all of SL(N). Thus the
invariant subspaces are the same for the two groups, so the linear reductivity
of SL(N,C) follows from the linear reductivity of SU(N).

Exercise: Show that the torus Gm(= GL(1)) is linearly reductive, indeed
show that any representation space V may be decomposed as a sum of one-
dimensional invariant subspaces.
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In particular, Hilbert’s fourteenth problem is true for any representation
of SL(N,C) by Theorems 1 and 2. Indeed, Weyl’s unitary trick can be
souped up to show that all connected semi-simple groups over C are linearly
reductive, which gives a very satisfactory result over the complex numbers.
However, over fields of characteristic p > 0, even the groups SL(N, k) are not
linearly reductive. To appease the characteristic p-lovers in the audience, and
also to clear up possible misconceptions based upon the confusing notation
in the literature, we remark on some improvements to Theorems 1 and 2
which extend the results to positive characteristic:

Definition: G is geometrically reductive if for every rational representation
ρ : G → GL(V ), and every invariant nonzero vector v ∈ V , there is an
invariant homogeneous polynomial P ∈ Sym(V ∗) of positive degree such
that P (v) ̸= 0.

Easy exercise: Show that linearly reductive implies geometrically re-
ductive, where the polynomial P may be chosen to be linear. (Hence the
terminology!)

Theorem (Nagata): If G is geometrically reductive, acting rationally on a
finitely generated k-algebra R, then RG is finitely generated.

Finally, there is the groupy definition of reductivity (taken from Borel),
which has the advantage of being easy to check (and true!) for such groups
as SL(N, k) and GL(N, k) in positive characteristic.

Definition: G is reductive if its radical (that is, the unique maximal con-
nected normal solvable subgroup of G) is a torus.

Theorem (Haboush): G is geometrically reductive if and only if it is
reductive.

This was known as Mumford’s conjecture before (and even after!) Haboush
proved it.
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