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0.3. Coherent Sheaves. On an affine Noetherian scheme Spec(A), each finitely

generated A-module M defines a coherent sheaf M̃ with

M̃(Uf ) = Mf

on the basis of open subsets Uf , f ∈ A of Spec(A). The stalk of this sheaf at a
prime ideal P is the localized module MP (as a module over the stalk OX,P = AP .)

A coherent sheaf F on a general Noetherian scheme X is a sheaf of OX -modules

that restricts to sheaves M̃i on an open affine cover Ui = Spec(Ai) and a morphism
of coherent sheaves is a morphism of sheaves of OX -modules. On an affine scheme,

a morphism f : M → N of A-modules uniquely determines a morphism ã : M̃ → Ñ
of coherent sheaves and vice versa, i.e. the “tilde” operation is an equivalence of
categories between finitely generated A-modules and coherent sheaves on Spec(A).

The category of coherent sheaves on X is abelian, equipped with a tensor product
(of sheaves of OX -modules). When X = Proj(R•), each finitely generated graded

R•-module M• similarly determines a coherent sheaf M̃ via graded localizations

M̃(UF ) = MF , the degree zero part of the localization of M at the multiplicative
set generated by F . In this case, two graded modules determine isomorphic coherent
sheaves if and only if they agree in all sufficiently high degrees. Thus in this case the
passage from graded modules to coherent sheaves induces an equivalence relation
on finitely generated graded modules.

Examples. The twisted module S(d)• on Pn
k defined by:

S(d)e = k[x0, ..., xn]d+e

corresponds to the coherent sheaf OPn(d), which is invertible via

OPn(d)⊗OPn(−d) ∼= OPn

We have already encountered the coherent ideal sheaves IZ ⊂ OX for closed
subschemes Z ⊂ X of a Noetherian scheme.

To form the cokernel C of a morphism α : F → G of coherent sheaves on X, it
is not sufficient to take cokernels C(U) = F(U)/G(U) of the sections. Instead, this
object is only a pre-sheaf which is sheafified (reduced to stalks and rebuilt) in order
to define the cokernel sheaf. The tensor product similarly requires sheafification,
but it is actually more problematic than this. The “correct” tensor product of two
coherent sheaves is the derived tensor product, which produces an object of the
derived category of X (see §0.4).

A coherent sheaf F on a Noetherian scheme X is:

(a) locally free if X has a (finite) cover by open sets U such that:

F|U ∼= ⊕rOX |U
are free modules over the rings of regular functions. These are the vector bundles.

(b) invertible if FU
∼= OX |U above. These are the line bundles.

Remark. On an affine scheme Spec(A), it is the projective modules M over A

(and not just the free modules) that give rise to locally free coherent sheaves M̃ .
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The fiber of a coherent sheaf F at a point x ∈ X is the vector space:

F(x) := Fx ⊗k(x) OX,x

where k(x) is the residue field OX,x/mx (the quotient by the maximal ideal). It is
a consequence of Nakayama’s Lemma that if v1, ...., vr ∈ F(x) are a spanning set
of vectors, then the induced map of coherent sheaves:

OX |rU → F|U
defined in a neighborhood x ∈ U is surjective, and then, working with the fibers of
the kernel coherent sheaf, that in a (smaller) neighborhood there is a presentation:

OX |sV
Φ→ OX |rV → F|V

with Φ = (ϕij) a matrix of regular functions. The corank of Φ(x) is the rank of
F(x) since the tensor product is right exact. It follows that:

x 7→ dimF(x)

is upper semi-continuous (taking its minimum on an open set), but even more, the
minors of Φ define closed subschemes Zr ⊂ X and a stratification of X with
locally closed strata Tr = Zr − Zr+1 that are maximal with the property that:

F is locally free of rank r on Tr

Given a morphism f : X → Y of Noetherian schemes, the pushforward

f∗F(U) = F(f−1(U))

of a coherent sheaf on X defines a quasi-coherent sheaf f∗F of OY modules, which
shares all the properties of a coherent sheaf except that the modules Mi need not
be finitely generated. When f is a projective morphism, however, the push-forward
is coherent, though again it is not really the correct object when there are higher
direct image coherent sheaves. As a functor, the push-forward is left exact.

In the affine case, when X = Spec(B) and Y = Spec(A) are affine schemes,

and Ñ is a coherent sheaf on X, then f∗Ñ = Ñ , regarding the B-module N as an
A-module via the ring homomorphism α : A → B.

The pull-back f∗G of a coherent sheaf on Y is defined locally by:

f∗G = f−1(G)⊗f−1OY
OX

where f−1(G)(U) = limV⊇f(U) G(V ) defines a pre-sheaf of f−1(OY )-modules, which
becomes a coherent sheaf of OX -modules via the tensor product. As a functor, the
pull-back is right exact.

In the affine case as above, f∗M̃ = M̃ ⊗A B, converting the A-module M to a
B-module (with the same generators).

Notice that locally free sheaves pull back to locally free sheaves, and the pull-back
is exact on sequences of locally free sheaves, but it is generally not left exact.

Example. The exact sequence of coherent sheaves on X:

0 → IZ → OX → i∗OZ → 0

for a closed embedding i : Z ↪→ X pulls back to:

i∗IZ → OZ
∼→ OZ → 0

and the pull-back of the ideal sheaf is not the zero sheaf.
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In fact, if f : X → S is a separated S-scheme, then:

ΩX/S = ∆∗(I∆/I2
∆)

is the coherent sheaf of relative differentials for ∆ : X → X ×S X. In general, the
coherent sheaf i∗(IZ) is the conormal sheaf of the closed embedding.

Example. If E is a locally-free sheaf of rank r on S, then π : P(E) → S is the
bundle of projective spaces equipped with a surjective map π∗E → OP(E)(1) onto a
line bundle representing the functor:

• P(E)(T ) = {a∗E → L → 0} for S-schemes a : T → S and

• P(E)(u) = pull-back for morphisms u : U → T of S-schemes.

then the relative dualizing sheaf for π fits into the Euler sequence:

0 → ΩP(E)/S → π∗E ⊗OP(E)(−1) → OP(E) → 0

It is a locally free sheaf by Nakayama’s Lemma. One can similarly define the bundle
of Grassmaannians (or flag varieties) over S. A relative proj construction is used to
create the S-scheme P(E) → S, which is locally (over S) isomorphic to projective
space Pr

U over (small enough) open sets U .

(i) If L is an invertible sheaf on S, then:

P(E ⊗ L) = P(E) and OP(E⊗L)(1) = OP(E)(1)⊗ π∗L
(ii) A surjective map F → E of locally free sheaves defines a closed embedding:

i : P(E) ⊂ P(F ) of S-schemes, with i∗OP(F )(1) = OP(E)(1)

In particular, if E is generated by global sections, i.e. if there is a surjection:

On
S → E for some n

then π : P(E) ⊂ Pn−1
S → S is a projective morphism.

Definition. An invertible sheaf L on S is ample if for each coherent sheaf F , there
is a nF ∈ Z such that F ⊗ L⊗n are generated by global sections for all n ≥ nF .

Thus if S admits an ample line bundle, then each π : P(E) → S is projective.

One source of ample line bundles are the (very) ample line bundles coming from
embeddings in projective space. Namely:

Theorem A (Serre). Let X be of finite type over k. Then an invertible sheaf L
on X is ample if and only if L⊗d = i∗OPn

k
(1) for some embedding i : X ↪→ Pr

k.

The embedding need not be closed in the Theorem (e.g. S could be affine).

If X is proper, though, then the embedding must be closed, and in that case X
is projective if and only if X has an ample line bundle. In general, a line bundle L
on an S-scheme f : X → S is relatively ample if L⊗d = i∗OPn

S
(1) for some closed

embedding of S-schemes.

Suppose X ⊂ Pr
k is a projective scheme over k. Then F = M̃• for:

Md = Γ(X,F ⊗OPn(d))

for the global section functor Γ from coherent sheaves to vector spaces. When
d ≥ dF , the Hilbert function dim(Md) is a polynomial in d. This is the Hilbert
polynomial HF (d), which (as a reality check) only depends on M• in large degrees.
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We seek a relative version of the Hilbert polynomial for projective S-schemes.
This is remarkably given to us by the notion of flatness.

Recall that a module M over a commutative ring A is flat if M ⊗A • is exact:

0 → N1 → N2 → N3 → 0

(an exact sequence of A-modules) remains exact when tensored by M :

0 → M ⊗N1 → M ⊗A N2 → M ⊗A N3 → 0

As with the pull-back, this is generally not the case, and in fact if M is finitely
generated and A is local, then M is flat over A if and only if M is free. Thus a
finitely generated module M over a Noetherian ring A is flat if and only if each MP

is flat over AP (localizing is exact), if and only if M is locally free (i.e. projective).
However, we are primarily interested in modules that are not finitely generated:

Remark. It is a useful exercise to convince yourself that M is flat if and only if:

M ⊗A I → M is injective for all ideals I ⊂ A

Definition. (i) A coherent sheaf F on an S-scheme

f : X → S

is flat over S at x ∈ X if the stalk Fx is a flat OS,f(x)-module (via OS,f(x) → OX,x).

(ii) F is flat over S it is flat over S at all points x ∈ X.

(iii) If OX itself is flat over S, then we say f : X → S is a flat morphism.

Remark. Flatness itself is stable under base extension. That is, if F is flat over S
and a : T → S is a morphism, then:

FT := ã∗F
is flat over T , for the fiber product diagram:

XT
ã→ X

↓ f ↓
T

a→ S

Two examples of flatness are explicit and very useful.

Flatness over a Field. If OS,s is a field, then flatness places no condition on a
module Fx with f(x) = s, which, as a module over OS,s, is simply a vector space.

Flatness over a DVR. If OS,s is a DVR, flatness requires that the generator
π ∈ ms not annihilate any (nonzero) element of Fx.

Remark. Each coherent sheaf F on a Noetherian scheme X has a finite set of
associated points, which are the associated primes of the modules Mi on an affine
cover of X. Then the two conditions above give the following:

Flatness over a Regular Curve. If C is a regular curve over a field k, then a
coherent sheaf on f : X → C is is flat over C if and only if each associated point of
F maps to the generic point of C.

Example. Suppose X is a variety of finite type over k. Then f : X → C is flat if
and only if f is not the constant map. If X is reduced, then f is flat if and only if
every component of X maps to the generic point.

A more difficult result characterizes flat projective morphisms.
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Remark. The fibers of an S-morphism f : X → S are the subschemes:

is : Xs = X ×S Spec(k(s)) ↪→ X

for the (closed) points of S, and the fibers of a coherent sheaf F are: F|Xs
:= i∗sF .

Then there is a natural map of vector spaces: f∗Fs ⊗OS,s
k(s) → Γ(Xs,F|Xs)

from the fiber of the push-forward sheaf to the global sections of the fiber sheaf. In
general, this may be neither injective nor surjective. However, when f is flat, this
is an isomorphism (of vector spaces).

Flatness for Projective Morphisms. If S is of finite type over a field k and

π : X ↪→ Pn
S → S

is a projective S-morphism, then F is flat over S if and only if the coherent sheaves:

π∗
(
F ⊗OPn

S
(d)

)
are locally free for all d ≥ dF . In particular, by the previous remark, the Hilbert
polynomials of the fiber sheaves Fs over a connected base are constant.

Corollary 1. The dimension of the fibers of a flat morphism f : X → S is constant.

Corollary 2. Each coherent sheaf F on f : X → S as above induces a canonical
flattening stratification on S, consisting of “maximal” locally closed subschemes:

TP indexed by polynomials P : Z → Z
over which F is flat of relative Hilbert polynomial P .

The Hilbert Scheme Functor for Pn
k .

• hP (S) ⊂ {closed embeddings X ⊂ Pn
S}

consists of flat S-schemes f : X → S of relative Hilbert polynomial P .

• h(a) = base extension by a : T → S

This was generalized by Grothendieck to

The Quotient Functor for a coherent sheaf V on a closed subscheme Z ⊂ Pn
k

• QP (S) = {quotient sheaves VS → F on Z × S that are flat over S}
• h(a) = base extension.

We will prove these are representable by projective schemes of finite type over k.


