Math 7800/Fall 2019
Fano Varieties and Calabi-Yau Categories
M,W 1:25-2:25, LCB 323 (the schedule is negotiable)

The stability conditions and moduli of complexes of vector bundles (D-branes) give rise to invariants of Calabi-Yau and Fano varieties with applications to algebraic geometry and mirror symmetry. The main purpose of this course is to explore four examples: K3 surfaces, Fano and quintic threefolds and cubic fourfolds. We will also investigate the Homological Projective Duality conjecture of Kuznetsov since Kuznetsov components are “non-commutative” Calabi-Yau categories associated to Fano varieties supporting stability conditions.

This is an advanced seminar course. One year of graduate algebraic geometry (e.g. Harshorne, Algebraic Geometry) is a must, and one more year is desirable. The course will involve student participation, since the goal is for the students, and not just the instructor, to be in a position to frame and work on open problems in the area.

Topics to be covered with references (in this order).

Triangulated Categories and Stability Conditions.

[0] Huybrechts, Fourier-Mukai Transforms in Algebraic Geometry.

Homological Projective Duality

K3 Surfaces

Fano Threefolds

The Quintic Threefold

The Cubic Fourfold

The first class on Monday, August 19 will be mostly organizational. The motivated student may look at [0], [1] and [2] before the start of class and assist with the first several weeks of lectures (every student will eventually assist with the lectures). Aaron Bertram.