Solvability by Radicals

A Brief History. We’ve known the formula for the roots of an arbitrary quadratic polynomial since ancient times. A cubic formula emerged in the beginning of the modern era, followed by a quartic formula a few hundred years later. In these cases, the roots of an arbitrary polynomial are obtained by a series of square and cube roots (and arithmetic operations). The triumph of Galois Theory is to relate the existence of such a formula to the solvability of the Galois group of the polynomial. Thus, the solvability of the groups of S_2, S_3 and S_4 “explain” the general formulas, but only the quintic polynomials with solvable Galois groups may be solved in this way, so in particular there is no general formula for the roots of a general quintic (or higher degree) polynomial.

Discriminants. Let $\alpha_1, \ldots, \alpha_d \in \overline{\mathbb{Q}}$ be the roots of

$$f(x) = x^d + c_{d-1}x^{d-1} + \cdots + c_0 \in \mathbb{Q}[x]$$

with splitting field $F = \mathbb{Q}(\alpha_1, \ldots, \alpha_d)/\mathbb{Q}$.

Adapting the example from the previous section, we find that the determinant of the Vandermonde matrix (in the roots α_i) is:

$$\prod_{i<j}(\alpha_j - \alpha_i) \in F$$

which is a square root of $\Delta = (-1)^{\binom{d}{2}} \prod_{i=1}^{d} f'(\alpha_i)$

where Δ is the discriminant of the polynomial $f(x)$.

Examples. (a) For a (monic) quadratic polynomial $f(x) = x^2 + bx + c$, we have:

$$\Delta = -(2\alpha_1 + b)(2\alpha_2 + b) = -4(\alpha_1 \alpha_2) - 2(\alpha_1 + \alpha_2)b - b^2 = b^2 - 4c$$

(b) After a substitution $y = x + b$, a monic cubic polynomial in x becomes:

$$f(x) = y^3 + py + q$$

which has the additional pleasant property that the roots (in the y variable) satisfy:

$$\alpha_1 + \alpha_2 + \alpha_3 = 0 \quad \text{in addition to} \quad \alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_3 \alpha_1 = p \quad \text{and} \quad -\alpha_1 \alpha_2 \alpha_3 = q$$

From this (and a few suppressed calculations), we get

$$\Delta = -(3\alpha_1^2 + p)(3\alpha_2^2 + p)(3\alpha_3^2 + p) = -27q^2 - 4p^3$$

Note that these are polynomial functions of the coefficients of $f(x)$.

Proposition 1. Let $f(x) \in \mathbb{Q}[x]$ be a (monic) polynomial. Then:

(a) The discriminant Δ of $f(x)$ is a rational number.

(b) Either $\Delta = 0$ and there is a repeated root (and $f(x)$ is reducible), or else:

the sign of Δ is the number of conjugate pairs of complex roots of $f(x)$

Proof. Let $\deg(f(x)) = d$. The discriminant $\Delta = \Delta(\alpha_1, \ldots, \alpha_d)$ is a symmetric function of the roots of $f(x)$. In other words, if $g \in S_d$, then:

$$\Delta(\alpha_1, \ldots, \alpha_d) = \Delta(\alpha_{g(1)}, \ldots, \alpha_{g(d)})$$

(the sign of a square root of Δ is flipped by transpositions so it is not symmetric)
The coefficients of \(f(x) \) are also symmetric functions of the roots. Since
\[
f(x) = x^d + a_{d-1}x^{d-1} + \cdots + a_0 = \prod_{i=1}^{d} (x - \alpha_i)
\]
we see that \(f(x) \) is symmetric in the \(\alpha_i \) so all its (rational) coefficients are symmetric. Explicitly, these coefficients are:
\[
a_{d-1} = (-1) \sum \alpha_i, \quad a_{d-2} = \sum_{i < j} \alpha_i \alpha_j, \ldots, \quad a_0 = (-1)^d \alpha_1 \alpha_2 \cdots \alpha_d
\]
and then (a) follows from the:

First Theorem of Invariant Theory. Any symmetric polynomial in \(x_1, \ldots, x_n \) (with integer coefficients) is a polynomial function (also with integer coefficients) of the “elementary symmetric polynomials”
\[
\sigma_1 = \sum x_i, \quad \sigma_2 = \sum x_i x_j, \ldots, \quad \sigma_d = x_1 \cdots x_d
\]
(we’ll investigate this further later). Thus in particular the discriminant of \(f(x) \) is a polynomial in the coefficients of \(f(x) \), with integer coefficients (as a bonus).

Next, the first part of (b) is obvious from:
\[
\Delta = \prod_{i < j} (\alpha_i - \alpha_j)^2
\]
If there are \(p \) pairs of conjugate complex roots \(\alpha_i, \overline{\alpha}_i \) and no repeated roots, then:
\[
\Delta = \left(\prod_{i=1}^{p} (\alpha_i - \overline{\alpha}_i)^2 \right) \cdot \delta^2
\]
where \(\delta \in \mathbb{R}^* \) (so its square is positive) since it is invariant under conjugation and each \(\alpha_i - \overline{\alpha}_i \) is purely imaginary (so its square is negative).

Thus, in particular, the roots of an irreducible \(f(x) = x^2 + bx + c \) are:

- real if \(\Delta = b^2 - 4c \geq 0 \) and both complex if \(\Delta < 0 \)

and similarly, the roots of an irreducible \(f(x) = y^3 + py + q \) are:

- all real if \(\Delta \geq 0 \) and one real and a conjugate pair if \(\Delta < 0 \)

In other words, the roots of \(y^3 + py + q \) are real (and there are three of them) when:
\[
-\Delta = 27q^2 + 4p^3 < 0
\]

The Quadratic Formula. From \(\Delta = (\alpha_2 - \alpha_1)^2 \), we get:
\[
\alpha_i = \frac{(\alpha_1 + \alpha_2) \pm (\alpha_1 - \alpha_2)}{2} = \frac{-b \pm \sqrt{\Delta}}{2} \text{ and } \mathbb{Q}(\sqrt{\Delta}) = F
\]

The Cubic Formula. From \(f(x) = y^3 + py + q \), we make another substitution:
\[
y = z - \frac{p}{3z} \text{ to obtain } z^3 f(x) = z^6 + qz^3 - \left(\frac{p}{3} \right)^3
\]
from which we conclude (from the quadratic formula) that:
\[
z^3 = -\frac{-q \pm \sqrt{q^2 + 4\left(\frac{p}{3} \right)^3}}{2} = -\left(\frac{q}{2} \pm \sqrt{\left(\frac{q}{2} \right)^2 + \left(\frac{p}{3} \right)^3} \right)
\]
Interestingly, the intermediate solution for \(z^3 \) requires taking the square root:

\[
\sqrt{\left(\frac{q}{2} \right)^2 + \left(\frac{p}{3} \right)^3} = \frac{\sqrt{-3\Delta}}{18}
\]

Thus, in order to find three real roots (positive \(\Delta \)), one needs to pass through the complex numbers (square root of \(-3\Delta \)). This is an essential use of the complex numbers that is often credited as their “discovery” inherent in this cubic formula. Notice also that if we replace \(Q \) with \(Q(\omega_3) \), then a subsequent extension by the square root of \(\Delta \) or of \(-3\Delta \) is the same, since \(\sqrt{-3} \in Q(\omega_3) \).

Inspired by this formula, we make the following:

Definition. A separable polynomial \(f(x) \in K[x] \) is **solvable by radicals** if all of its roots are contained in a field \(E \) obtained as a series of “radical” extensions:

\[
K = E_0 \subset E_1 \subset \cdots \subset E_r = E
\]

where \(E_{i+1} = E_i(\beta_i) \) and \(\beta_i^{p_i} = b_i \in E_i \) for some primes \(p_i \).

Examples. Each polynomial \(f(x) = x^2 + bx + c \in Q[x] \) is solvable by radicals, with:

\[
Q \subset Q(\sqrt{-3}) \subset E_1(z)
\]

where \(z^3 = -\frac{q}{2} + \frac{\sqrt{-3\Delta}}{18} \). But if we pre-load the cube roots of 1, then:

\[
Q \subset F_0 = Q(\omega_3) = Q(\sqrt{-3}) \subset F_1 = F_0(\sqrt{\Delta}) \subset F_1(z)
\]

contains all of the roots (and so it contains a splitting field for \(f(x) \)). Hence every polynomial of degree 3 is solvable by radicals.

The Big Theorem of Galois. Let \(K \) be a field of characteristic zero.

(a) If \(f(x) \in K[x] \) is solvable by radicals, its Galois group \(G \) is solvable.

(b) Conversely, if \(G \) is a solvable group, then \(f(x) \) is solvable by radicals.

The idea is to relate splitting fields with cyclic Galois groups \(C_p \) of prime order to radical extensions. For this, we’ll use the uniquely named Hilbert Theorem 90.

Definition. Let \(F/K \) be a separable splitting field with Galois group \(G \). Then:

\[
\text{Nm}(\alpha) := \prod_{g \in G} ga \in K \quad \text{(since it is invariant under } G)\]

and it satisfies \(\text{Nm}(\alpha_1\alpha_2) = \text{Nm}(\alpha_1)\text{Nm}(\alpha_2) \), so \(\text{Nm} : F^* \to K^* \) is a character.

Notice that for each \(\beta \in F \) and \(g \in G \), we have: \(\text{Nm}(\beta) = \text{Nm}(g\beta) \) so that:

\[
\text{Nm}(\beta \cdot (g\beta)^{-1}) = 1
\]

Theorem 90 is the converse to this in the case when \(G \) is cyclic.

Hilbert’s Theorem 90. If \(G = C_n \) in the setting of the definition, generated by \(g \in G \), then each element \(\alpha \in F \) of norm 1 may be written as:

\[
\alpha = \beta \cdot (g\beta)^{-1} \quad \text{for some } \beta \in F
\]

Proof. For \(\alpha \in F \) of norm 1, define a sequence of partial norms:

\[
\alpha_1 = \alpha, \quad \alpha_2 = \alpha \cdot ga, \quad \alpha_3 = \alpha \cdot ga \cdot g^2a, \ldots, \quad \alpha_n = \text{Nm}(\alpha) = 1
\]
These obey the recursion:
\[\alpha_{i+1} = \alpha \cdot g\alpha_i \]
and by the independence of the characters \(\{1, g, \ldots, g^{n-1}\} : F^* \to F^* \), we have:
\[\alpha_1 \cdot 1 + \alpha_2 \cdot g + \cdots + \alpha_n \cdot g^{n-1} \neq 0 \]
as a function from \(F \) to \(F \)
so that there is a \(\gamma \in F \) for which:
\[\beta := \sum_{i=1}^{n} \alpha_i \cdot g^{i-1}(\gamma) \neq 0. \]
Then:
\[\alpha \cdot g\beta = \alpha \cdot \sum_{i=1}^{n} g\alpha_i \cdot g^i(\gamma) = \sum_{i=1}^{n-1} \alpha_{i+1} \cdot g^i(\gamma) + \alpha \cdot \gamma = \alpha \cdot \gamma + \sum_{i=2}^{n} \alpha_i \cdot g^{i-1}(\gamma) = \beta \]
and \(\alpha = \beta \cdot (g\beta)^{-1} \), as desired. \(\square \)

Example. Complex conjugation generates \(\text{Gal}(\mathbb{Q}(i)/\mathbb{Q}) \) and:
\[\text{Nm}(x + iy) = (x + iy)(x - iy) = x^2 + y^2 \]
so by the Theorem, \(a^2 + b^2 = 1 \) for \(a + bi \in \mathbb{Q}(i) \) if and only if:
\[a + ib = \frac{c + id}{c - id} = \frac{c^2 - d^2}{c^2 + d^2} + i \frac{2cd}{c^2 + d^2} \]
for some \(c + di \in \mathbb{Q}(i) \). This is a generation formula for Pythagorean triples!

Let \(K \) be a field of characteristic zero containing a primitive \(p \)th root \(\omega_p \) of \(1 \).

Corollary. Each splitting field \(F/K \) with \([F : K] = p \) is the splitting field of:
\[x^p - b \in K[x] \text{ for some } b \in K \]

Proof. The Galois group of \(F/K \) has prime order \(p \), so it is cyclic.

Let \(\alpha = \omega_p \in K \) and let \(g \in C_p \) generate the Galois group. Then
\[\text{Nm}(\alpha) = \omega_p \cdot (g\omega_p) \cdots (g^{p-1}\omega_p) = \omega_p^p = 1 \text{ since } \omega_p \in K \text{ is fixed by } g \]

By the Theorem, we may choose \(\beta \in F \) so that \(\alpha = \beta \cdot (g\beta)^{-1} \). Then in particular \(\beta \notin K \) (since \(\beta \) is not fixed by \(g \)), and:
\[1 = \alpha^p = (\beta \cdot (g\beta)^{-1})^p = (\beta^p) \cdot (g\beta)^{-p} = (\beta^p) \cdot (g\beta^p)^{-1} \]
so \(\beta^p = g\beta^p \) is invariant under the Galois group, and \(\beta^p = b \in K \). Thus \(F = K(\beta) \)
is a splitting field of \(x^p - b \) with roots \(\beta, \omega_p \).

We may now prove Galois' Theorem (Part (b)).

Suppose \(K \) has characteristic zero and \(F \) is a splitting field of \(f(x) \in K[x] \) with solvable Galois group \(G = \text{Gal}(F/K) \). Then there is a chain:
\[1 \subset G_1 \subset G_2 \subset \cdots \subset G_r = G \]
of normal subgroups \((G_i \text{ in } G_{i+1}) \) with prime cyclic quotient groups \(G_{i+1}/G_i = C_p \),
and there is a corresponding chain of fixed fields:
\[K = F^G \subset F^{G_{r-1}} \subset \cdots \subset F^{G_1} \subset F^1 = F \]
For each \(i \), consider the inclusions:
\[F^{G_{i+1}} \subset F^{G_i} \subset F \text{ with } \text{Gal}(F/F^{G_i}) = G_i \]
Then:

\[1 \to G_i \to G_{i+1} \to \text{Gal}(F^{G_i}/F^{G_{i+1}}) \to 1 \]

so \(F^{G_i}/F^{G_{i+1}} \) is a splitting field and an extension of degree \(p_i \). If \(K \) contains \(\omega_{p_i} \), then by the Corollary above, \(F^{G_i} \) is obtained from \(F^{G_{i+1}} \) by adjoining a root \(\beta_i \). Otherwise, we replace \(K \) with:

\[
K(\omega_n) \text{ where } n \text{ is the product of (one of each) prime } p_i
\]

and we replace the fields \(F^{G_i} \) above with \(E_i = F^{G_i}(\omega_n) \).

Then the extensions \(E_i/E_{i+1} \) are still splitting fields, of degree \(p_i \) (or 1), and:

\[
K(\omega_n) = E_r \subset E_{r-1} \subset \cdots \subset E_0 = F(\omega_n)
\]

shows that \(f(x) \) is solvable by radicals as a polynomial in \(K(\omega_n)[x] \). To finish the proof, it suffices to show that if \(\omega_n \notin K \), then the splitting field \(K(\omega_n)/K \) can be solved by radicals. But this is a splitting field with abelian Galois group, and solvability by radicals follows by induction on the largest prime factor of \(n \).

To see Part (a) of Galois’ Theorem, suppose \(f(x) \in K[x] \) is solvable by radicals, i.e. the splitting field \(F/K \) is contained in a field \(E \) obtained by extensions:

\[
K = E_0 \subset E_1 = E_0(\beta_1) \subset \cdots \subset E = E_r = E_{r-1}(\beta_{r-1}) \subset E_r(\beta_r) = E
\]

as in the definition. If \(\omega_n \in K \) and \(E/K \) is a splitting field then each:

\[
E_i \subset E_{i+1} \subset E
\]

is an intermediate splitting field, so \(G_{i+1} = \text{Gal}(E/E_{i+1}) \subset G_i = \text{Gal}(E/E_i) \) is a normal subgroup with quotient \(C_{p_i} \), and the Galois group of \(E/K \) is solvable. Then from the intermediate splitting field \(K \subset F \subset E \) we obtain a surjective map \(\text{Gal}(E/K) \to \text{Gal}(F/K) \) and it follows that \(\text{Gal}(F/K) \) is also solvable.

If \(\omega_n \notin K \), then we may pre-load it via:

\[
K \subset K(\omega_n) \subset E_1(\omega_n) \subset \cdots \subset E_r(\omega_n)
\]

We’ve seen above that \(\omega_n \) is solvable by radicals, and the result follows, assuming that \(E_r(\omega_n)/K \) is a splitting field. Thus to finish, we need to deal with the fact that \(E/K \) may not be a splitting field. To see the problem, consider the following:

Example. Let \(\mathbb{Q} \subset \mathbb{Q}(i) \subset \mathbb{Q}(i)(\sqrt{1+i}) = E \). Then \(E/\mathbb{Q} \) is not a splitting field. Complex conjugation, which is an isomorphism \(\sigma : \mathbb{Q}(i) \to \mathbb{Q}(i) \), does not lift to an isomorphism \(\tau : \mathbb{Q}(i)(\sqrt{1+i}) \to \mathbb{Q}(i)(\sqrt{1+i}) \). Instead,

\[
\mathbb{Q} \subset \mathbb{Q}(i) \subset \mathbb{Q}(i)(\sqrt{1+i}) \subset \mathbb{Q}(i)(\sqrt{1+i}, \sqrt{1-i})
\]

is a splitting field for the polynomial:

\[
(x^2 + 1)(x^2 - (1+i))(x^2 - (1-i)) = (x^2 + 1)(x^4 - 2x^2 + 2)
\]

Inspired by this Example, given radical extensions:

\[
K \subset E_1 \subset \cdots \subset E_r = E \subset E(\beta) \text{ with } \beta^{p} = b \in E
\]

and the property that \(E/K \) is a splitting field with Galois group \(H \) and polynomial \(e(x) \in K[x] \), then \(f(x) = \prod_{h \in H} (x^p - hb) \in K[x] \) since \(f(x) \) is invariant under \(H \) and \(E_r \subset E(\beta) \subset E_{r+|H|} = E(..., \sqrt{hb}, ...) \) is a splitting field over \(K \) for \(e(x)f(x) \). □
Example. In the cubic formula for \(f(x) = y^3 + py + q \) (and \(\omega_3 \in K \)), we determined that we could find a splitting field for \(f(x) \) inside a splitting field \(E/K \), where:

\[
K \subset K(\sqrt[3]{\Delta}) \subset K(\sqrt{\Delta}(z_1, z_2)) = E
\]

and

\[
z_1^3 = -\frac{q}{2} + \frac{\sqrt{-3\Delta}}{18} \quad \text{and} \quad z_2^3 = -\frac{q}{2} - \frac{\sqrt{-3\Delta}}{18}
\]

The Galois group of \(K(\sqrt{\Delta})/K \) (assuming it has degree 2) is generated by:

\[
g(\sqrt{\Delta}) = -\sqrt{\Delta}
\]

and so \(E \) is a splitting field for \((x^2 - \Delta)(x^6 - qx^3 - \frac{q^3}{27}) \) (or, if \(K \) has no primitive cube root of 1, for the polynomial \((x^2 + x + 1)(x^2 - \Delta)(x^6 - qx^3 - \frac{q^3}{27}) \)).

Postponed Issues. First, some invariant theory:

Let \(f(x_1, \ldots, x_n) \in \mathbb{Z}[x_1, \ldots, x_n]_d \) be a homogeneous symmetric polynomial of degree \(d \), i.e. \(f \) is a sum of monomials \(a_1 x_1 = a_1 x_1^1 \cdots x_n^1 \) of degree \(d \) and:

\[
f(x_1, \ldots, x_n) = gf := f(x_{g(1)}, \ldots, x_{g(n)}) \text{ for all } g \in S_n
\]

Then we may impose the “lexicographic” order on these monomials, with:

\[
x_1 \prec x_2 \prec \cdots \prec x_n
\]

and \(a_1 x_I \prec a_J x_J \) if \(i_1 = j_1, \ldots, i_k = j_k \) and \(i_{k+1} < j_{k+1} \) for some \(0 \leq k < n \), so that \(I \) would come before \(J \) if they were words in a dictionary. Then \(f \) is determined by the coefficients \(a_I \) of the “initial, non-increasing” monomials \(x_I \) with \(n \geq i_1 \geq i_2 \geq \cdots \geq i_n \geq 0 \) that appear first in their \(S_n \) orbit, and the elementary polynomials are those with the single initial monomial \(x_I = x_1 \cdots x_k \), so that:

\[
\sigma_0 = 1, \quad \sigma_1 = \sum_i x_i, \quad \sigma_2 = \sum_{i \neq j} x_i x_j = \sum_{i < j} x_i x_j
\]

Now suppose that \(x_I = x_1^{i_1} \cdots x_n^{i_n} \) is a non-increasing monomial. Then:

\[
x_I = \sigma_n^{i_n} \sigma_{n-1}^{i_{n-1} - i_n} \cdots \sigma_1^{i_1 - i_2} + \sum_J a_J x_J
\]

and each monomial in the error \(a_J \neq 0 \) satisfies \(x_I \prec x_J \). It follows that:

\[
f(x_1, \ldots, x_n) \in \mathbb{Z}[\sigma_1, \ldots, \sigma_n] \text{ is a polynomial of (weighted) degree } d \text{ in } \sigma_1, \ldots, \sigma_n
\]

Examples.

\[
\sum_{i=1}^n x_i^2 = \sigma_1^2 - 2 \sum_{i < j} x_i x_j = \sigma_1^2 - 2\sigma_2
\]

\[
\sum_{i < j} x_i^2 x_j = \sigma_1 \sigma_2 - 3\sigma_3
\]

\[
\sum_{i=1}^n x_i^3 = \sigma_1^3 - 3 \sum_{i < j} x_i^2 x_j - 6 \sum_{i < j < k} x_i x_j x_k = \sigma_1^3 - 3(\sigma_1\sigma_2 - 3\sigma_3) - 6\sigma_3 = \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3
\]

These generalize to the “Newton” expansion of the power sum.

We will use this technology in our analysis of the:
Quartic Formula. Since the Galois group of a quartic polynomial

\[f(x) = y^4 + p y^2 + q y + r = \prod_{i=1}^{4} (x - \alpha_i) \]

is a subgroup of \(S_4 \) which is solvable, Galois’ Theorem explains the existence of a quartic formula solving \(f(x) \) with radicals (and leaving \(p, q, r \) as indeterminants). But more is true. The Theorem tells us how to find the formula. Note that for:

\[\omega_3 \]

solving \(S_4 \), the only prime cyclic quotient groups \(C_p = G_{i+1}/G_i \) have \(p = 2, 3 \), so our first step is to preload \(\omega_3 \) to replace \(\mathbb{Q} \) with \(K = \mathbb{Q}(\omega_3) \). Also note that there are three choices for the normal subgroup \(C_2 \subset K_4 \), unlike the other normal subgroups, which are uniquely determined and normal subgroups of \(S_4 \).

The subfields may be associated to the homogeneous polynomials:

\[D = \prod_{i<j} (\alpha_i - \alpha_j), \]

\[a = (\alpha_1 - \alpha_2)(\alpha_3 - \alpha_4), \quad b = (\alpha_1 - \alpha_3)(\alpha_2 - \alpha_4), \quad c = (\alpha_1 - \alpha_4)(\alpha_2 - \alpha_3) \]

and

\[u = \alpha_1 + \alpha_2 - \alpha_3 - \alpha_4, \quad v = \alpha_1 - \alpha_2 + \alpha_3 - \alpha_4, \quad w = \alpha_1 - \alpha_2 - \alpha_3 + \alpha_4 \]

of degrees 6, 4 and 1 in the roots of \(f(x) \), respectively.

Our first subfield is familiar. Since \(D \) is invariant for the action of \(A_4 \), and

\[\Delta = \left(\prod_{i<j} (\alpha_i - \alpha_j) \right)^2 \]

is invariant for the action of \(S_4 \), we have the intermediate field:

\[K \subset K(D) = F^{A_4} \subset F \]

where \(F/K \) is the splitting field for \(f(x) \) and \(K(D) \) is the splitting field for \(x^2 - \Delta = x^2 - D^2 \).

Next up, notice that \(K_4 \) fixes each of \(a, b \) and \(c \), but that

\[\gamma(a) = c, \quad \gamma(b) = -a, \quad \gamma(c) = -b \quad \text{for} \quad \gamma = (1 \ 2 \ 3), \]

and \(\tau(a) = -a, \quad \tau(b) = c, \quad \tau(c) = b \quad \text{for} \quad \tau = (1 \ 2) \)

and we conclude that the set \(\{ \pm a, \pm b, \pm c \} \) is fixed by the action of \(S_4 \), and so:

\[h(x) = (x^2 - a^2)(x^2 - b^2)(x^2 - c^2) \in K[x] \]

This gives us the expected intermediate field:

\[K \subset K(a, b, c) = F^{K_4} \subset F \]

whose degree \(F^{K_4}/K \) indeed matches \(|S_4/K_4| \), so this has Galois group \(S_3 \).

Moreover, note that \(abc = D \), so we can squeeze in the field:

\[K \subset K(D) \subset K(a, b, c) \subset F \]

though \(D \) is not the discriminant of \(h(x) \). In fact, \(D(h) = D(a^2 - b^2)(a^2 - c^2)(b^2 - c^2) \) is fixed by the full symmetric group, so it belongs to \(K \).

On the other hand, \(K(D) \subset K(a, b, c) \) is a splitting field, generated by some \(\beta \in K(a, b, c) \) with \(\beta^3 \in K(D) \) by the Corollary to Hilbert Theorem 90.
But we can do better. In $K(D)[x]$, $h(x)$ factors as a product:

$$h_1(x)h_2(x) = ((x - a)(x + b)(x - c))((x + a)(x - b)(x + c))$$

since $\{a, -b, c\}$ is permuted by the alternating group! Thus, the coefficients of:

$$h_1(x) = (x - a)(x + b)(x - c) = x^3 + (b - a - c)x^2 + (ac - ab - bc)x + abc$$

are invariant. But $abc = D$ and $b - a - c = 0$. This leaves an S_4-invariant term

$$ac - ab - bc = -\alpha_1^2\alpha_2^2 + \alpha_1^2\alpha_2\alpha_3 - 6\alpha_1\alpha_2\alpha_3\alpha_4 + \text{non-initial terms}$$

$$= -\sigma_2^2 + 3\sigma_1\sigma_3 - 12\sigma_4$$

Keeping in mind that $\sigma_1(\alpha) = 0, \sigma_2(\alpha) = p, \sigma_3(\alpha) = -q, \sigma_4(\alpha) = r$, we get:

$$h_1(x) = (x^3 - (p^2 + 12r)x + D) \text{ and } h_2(x) = (x^3 - (p^2 + 12r)x - D)$$