We start this semester with groups.

Definition. A group \((G, \cdot)\) is a set \(G\) with a multiplication operation:
\[\cdot : G \times G \to G \]
that is

(i) Associative: \(g_1(g_2 \cdot g_3) = (g_1 \cdot g_2)g_3\) for all \(g_1, g_2, g_3 \in G\).

(ii) Equipped with a two-sided multiplicative identity \(e \in G\), i.e., for all \(g \in G\):
\[e \cdot g = g \text{ (left identity) and } g \cdot e = g \text{ (right identity) } \]

(iii) Pairs each \(g \in G\) with a two-sided inverse \(g^{-1} \), i.e. \(g^{-1} \cdot g = e = g \cdot g^{-1}\).

Examples. Abelian groups, which are also commutative (with \(+\) as the operation).

We will write \(\text{Perm}(S)\) for the automorphism group of a set \(S\).

The group \(\text{GL}(n, k)\) of linear automorphisms of \(k^n\). More generally, we will write \(\text{GL}_k(V)\) for the group of linear transformations of a vector space \(V\) over \(k\).

These last two examples are instances of the:

MetaExample. \(G = \text{Aut}_\mathcal{C}(X)\) for an object \(X\) of a category \(\mathcal{C}\).

Let’s dispose of some uniqueness properties first:

Uniqueness of the Identity. If \(e'\) is any (right) identity, then in particular,
\[ee' = e \text{ in addition to the equality } ee' = e' \]
since \(e\) is a left identity. So \(e = e'\) and there is no other right identity than the two-sided identity \(e\). Similarly, there is no other left identity.

Uniqueness of the Inverse. Suppose that \(h\) is a (right) inverse to \(g\). Then:
\[g^{-1}(gh) = g^{-1} \text{ in addition to the equality } (g^{-1}g)h = h \]
so by the associative property and the fact that \(g^{-1}\) is a left inverse of \(g\), we have \(g^{-1} = h\) and there is no other right inverse. Similarly, there is no other left inverse.

Corollary. Given a group \(G\), there is a well-defined inverse map:
\[i : G \to G; \ i(g) = g^{-1} \text{ satisfying } i \circ i = 1_G \]

Definition. A set mapping \(f : G \to G'\) of groups is a homomorphism if:
\[f(e) = e' \text{ and } f(g_1g_2) = f(g_1)f(g_2) \]
for all \(g_1, g_2 \in G\). This defines a category \(\mathcal{G}r\) of groups \((G, \cdot)\) since the composition:
\[(f' \circ f)(g_1 : g_2) = f'(f(g_1) : f(g_2)) = (f' \circ f)(g_1) \cdot (f' \circ f)(g_2) \]
of group homomorphisms is a group homomorphisms.

Proposition 1. A bijective group homomorphism \(f : G \to G'\) is an isomorphism.

Proof. Given a bijective homomorphism \(f : G \to G'\), we note that \(f^{-1}(e') = e\) and given \(g_1' = f(g_1), g_2' = f(g_2)\), then \(g_1' : g_2' = f(g_1)f(g_2) = f(g_1g_2)\), and so
\[f^{-1}(g_1' \cdot g_2') = g_1g_2 = f^{-1}(g_1')f^{-1}(g_2'). \]
Examples. (a) The determinant \(\det : \text{GL}(n, k) \to (k^*, \cdot) = \text{GL}(1, k) \)

(b) The inverse \(i : G \to G \) is not a homomorphism since:
\[
i(g \cdot h) = (g \cdot h)^{-1} = h^{-1} \cdot g^{-1} = i(h) \cdot i(g)
\]
i.e. the inverse mapping reverses the product.

(c) Left multiplication by an element \(g \neq e \) is not a homomorphism, since:
\[
g(g_1g_2) \neq (gg_1)(gg_2) \quad \text{(for most } g \text{ in most groups)}
\]
However, left multiplication by \(g \), denoted by \(l_g \), defines a homomorphism
\[
l : G \to \text{Perm}(G): g \mapsto l_g
\]
from \(G \) to the group of permutations of \(G \), since \(l_e = 1_G \) and \(l_g l_h = l_{g \cdot h} \). Moreover, since \(l_g(e) = g \) recovers the left translator, the \(l \) homomorphism is injective.

(d) Similarly, right multiplication by the inverse of \(g \in G \) is a homomorphism:
\[
r : G \to \text{Perm}(G): g \mapsto r_g^{-1}
\]
since \(r_{gh^{-1}}(a) = a \cdot (gh)^{-1} = (ah^{-1})g^{-1} = r_{g^{-1}} \circ r_{h^{-1}}(a) \).

(e) Conjugation by \(g \in G \) is given by:
\[
c : G \to \text{Aut}_G(G) \subset \text{Perm}(G): c_g(h) = (l_g \circ r_{g^{-1}})(h) = ghg^{-1}
\]
Each \(c_g \) is a group automorphism of \(G \) since \(c_e = 1_G \), and:
\[
c_g(h_1h_2) = gh_1h_2g^{-1} = (gh_1g^{-1}) \cdot (gh_2g^{-1}) = c_g(h_1) \cdot c_g(h_2)
\]

Definition. A subset \(H \subset G \) is a subgroup if:

(i) \(e \in H \), (ii) \(h \in H \) implies \(h^{-1} \in H \), and (iii) \(h_1, h_2 \in H \) imply \(h_1 \cdot h_2 \in H \)

In other words, \((H, \cdot) \) is a group sitting inside \(G \) (with the same multiplication).

Example. The image \(f(G) \subset G' \) of a homomorphism \(f : G \to G' \) is a subgroup. Also, if \(H' \subset G' \) is a subgroup, then the preimage \(f^{-1}(H') \subset G \) is a subgroup.

This, together with Example (c) above give:

Cayley’s Theorem. Every group \(G \) is isomorphic to a subgroup of \(\text{Perm}(G) \).

In fact, it is a subgroup in potentially two distinct ways, since both left and right multiplication (by the inverse) are injections of \(G \) into \(\text{Perm}(G) \). Note, however, that conjugation is not (usually) an injection of \(G \) into \(\text{Aut}_G(G) \).

Definition. Given a subgroup \(H \subset G \), the left cosets of \(H \) are:
\[
gH = \{gh \mid h \in H\}
\]
and the right cosets are defined analogously.

Proposition 2. The left cosets are equivalence classes for the equivalence relation:
\[
g_1 \sim g_2 \text{ if and only if } g_1h = g_2 \text{ for some (unique) } h \in H
\]
In particular, if \(H \) is finite, then each equivalence class has the same number:
\[
|gH| = |H| \text{ of elements}
\]
and if \(G \) is finite, then we have:

Lagrange’s Theorem: \(|G| = |H| \cdot |G/H|\) where \(|G/H|\) is the number of left cosets.
Definition. The order of $g \in G$ is the smallest $d \geq 1$ so that $g^d = e$, or else, if there is no such d, we say that g has infinite order.

Proposition 3. If $|G| = n$, then the order of each $g \in G$ divides n.

Proof. Consider the $n+1$ elements $e, g, g^2, \ldots, g^n \in G$. Since $|G| = n$, at least two of them must coincide. Let $d \geq 1$ be the minimal “gap” so that $g^a = g^{a+d}$ for some a. Then $e = g^d$ (multiplying by g^{-a}), and so $H = \{e, g, g^2, \ldots, g^{d-1}\}$ is a cyclic subgroup of G consisting of d distinct elements. Thus $d = |H|$ divides n. □

Remark. As a consequence of the Proposition, $g^n = e$ for all $g \in G$ if $|G| = n$.

Corollary (Euler). The units in the ring $\mathbb{Z}/n\mathbb{Z}$, consisting of the elements that are relatively prime to n, form a group $(\mathbb{Z}/n\mathbb{Z})^*$, whose order is $\phi(n)$. Then:

$$a^{\phi(n)} \equiv 1 \pmod{n} \text{ if } \gcd(a, n) = 1$$

by the Proposition. In particular, we have **Fermat's Little Theorem:**

$$a^{p-1} \equiv 1 \pmod{p}$$

when p is prime not dividing a.

Proposition 4. The kernel $K \subset G$ of a homomorphism $f : G \to G'$, is a subgroup with the additional property:

$$c_g(K) = K \text{ for all } g \in G$$

This follows directly from the definitions. For example,

$$f(gk^{-1}g^{-1}) = f(g)f(k)f(g^{-1}) = f(g)e'f(g^{-1}) = f(g)f(g^{-1}) = f(e)^2 = e'$$

so $gkg^{-1} \in K$ whenever $k \in K$ showing that $c_g(K) \subset K$.

Definition. A subgroup $N \subset G$ with the additional property:

$$c_g(N) = N \text{ for all } g \in G$$

is called a **normal** subgroup of G.

Remark. All subgroups of an abelian group are normal, but we will see that there are plenty of subgroups of a general group G that are not normal.

Example. Let $H \subset \text{GL}(2, k)$ be the subgroup of linear transformations that fix the x-axis. Such matrices are all of the form:

$$\begin{bmatrix} * & * \\ 0 & * \end{bmatrix}$$

but if we conjugate these by the reflection matrix:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

we get the matrices that fix the y-axis, which are all of the form:

$$\begin{bmatrix} * & 0 \\ * & * \end{bmatrix}$$

Thus H is not normal.

Definition. The **center** $Z(G) \subset G$ of a group G is the set:

$$Z(G) = \{h \in G \mid c_g(h) = ghg^{-1} = h \text{ for all } g \in G\}$$

i.e. $Z(G)$ consists of the elements of G that commute with all elements of G.
Remarks. (i) The center of a group always contains the identity element e.

(ii) Every subgroup $H \subset Z(G)$ is a normal, abelian subgroup of G.

Example. The center of $GL(n, k)$ consists of the (nonzero) scalar multiples of I_n.

First Isomorphism Theorem. Each normal subgroup $N \subset G$ is the kernel of a surjective group homomorphism to the quotient group of (left) cosets:

$$q : G \to G/N = \{gN \mid g \in G\}$$

and conversely, if $K \subset G$ is the kernel of a group homomorphism $f : G \to G'$, then f factors through q followed by an isomorphism with the image: $\tilde{f} : G/K \cong f(G)$.

Proof. The product of cosets:

$$(g_1H)(g_2H) = (g_1g_2)H$$

is not automatically well-defined for a general subgroup of G, since multiplication is not commutative. However, because N is a normal subgroup of G, we have:

$$g_2^{-1}Ng_2 = N$$

so $Ng_2 = g_2N$

i.e. the left cosets and right cosets are the same. But then:

$$(g_1N)(g_2N) = (g_1N)(Ng_2) = g_1Ng_2 = (g_1g_2)N$$

is well-defined, and the rest of the proof is the same as we’ve seen in the context of commutative rings and ideals.

For the rest of this section, we introduce ourselves to:

The Permutation Groups S_n

Definition. A d-cycle is a permutation $f : [n] \to [n]$ with the property that:

$$f(a), f^2(a), f^3(a), \ldots, f^d(a) = a$$

are distinct, for some $a \in [n]$, and all other elements $b \in [n]$ satisfy $f(b) = b$.

The notation for the cycle is:

$$C = (a b c \ldots)$$

which is ambiguous only in the choice of the initial element of the cycle.

Example. The two-cycles (transpositions) $(a \ b)$ and $(b \ a)$ are the same, as are

$$(a \ b \ c), (b \ c \ a) \text{ and } (c \ a \ b)$$

Remarks. (i) The identity $e \in S_n$ is the only one-cycle.

(ii) Disjoint cycles commute with each other, but:

$$(a \ b)(b \ c) = (a \ c \ b) \neq (a \ b \ c)(b \ a)$$

when $a \neq b \neq c$. Thus, for example, S_n is not abelian when $n \geq 3$.

Cycle Notation. Every permutation $f \in S_n$ is a product of disjoint cycles.

Proof. Start with $a_1 = a \in [n]$ and consider the list of elements.

$$a, f(a), f^2(a), \ldots, f^n(a)$$

There must be a repetition in the list (since this consists of $n + 1$ elements of $[n]$). Let $f^k(a) = f^{k+d}(a)$ with the smallest (positive) gap value d. Then:

$$a = f^{-b}f^k(a) = f^{-b}f^{k+d}(a) = f^d(a)$$

and each of $a, f(a), \ldots, f^{d-1}(a)$ are distinct. So this determines a cycle C_1.

Given cycles $C_1, ..., C_i$ with initial elements $a_1, ..., a_i$ associated to f, choose a_{i+1} distinct from the list of elements in the cycles, and consider the cycle:

$$C_{i+1} = (a_{i+1}, f(a_{i+1}), ..., f^{d_{i+1}-1}(a_{i+1}))$$

constructed as above. Then C_{i+1} is disjoint from each of the cycles $C_1, ..., C_i$. Eventually this process uses up all elements of $[n]$ and produces:

$$C_1 \cdot C_2 \cdot \cdots \cdot C_m$$

which accounts for every value $f(a)$ for $a \in [n]$. This represents the permutation.

Uniqueness. The disjoint cycles commute with each other and can start with any element in their list. Thus, the expression: $f = C_1 \cdot C_2 \cdot \cdots \cdot C_m$ is uniquely determined by f, if we make the convention that:

(a) Each cycle C_i commences with the smallest element a_i in the list, and

(b) The cycles are ordered so that $a_1 < a_2 < \cdots < a_m$

Moreover, since one-cycles are redundant, they are left out of the notation.

Lists of Elements.

$S_2 = \{e, (1 \ 2)\}$, $S_3 = \{e, (1 \ 2), (1 \ 3), (2 \ 3), (1 \ 2 \ 3), (1 \ 3 \ 2)\}$

$S_4 = \{e, (\ast \ast), (\ast \ast \ast), (\ast \ast \ast \ast), (\ast \ast)(\ast \ast)\}$

i.e. every element of S_4 is either a single cycle or a product of disjoint two-cycles.

These are easily counted:

(i) $\{\ast \ast\}$ is comprised of $\binom{4}{2} = 6$ elements.

(ii) $\{\ast \ast \ast\}$ is comprised of $\binom{4}{3} \times 2 = 8$ elements.

(iii) $\{\ast \ast \ast \ast\}$ is comprised of $\binom{4}{4} \times 3! = 6$ elements.

(iv) $\{\ast \ast \ast \ast\}$ is comprised of the 3 elements $(1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4)$ and $(1 \ 4)(2 \ 3)$

which, including the identity, accounts for the $1 + 6 + 8 + 6 = 4!$ elements of S_4.

Lists of Subgroups.

The only (proper) subgroup of S_2 is $\{e\}$.

The subgroups of S_3 are $\{e\}, \{e, (1 \ 2)\}, \{e, (1 \ 3)\}, \{e, (2 \ 3)\}, \{e, (1 \ 2 \ 3), (1 \ 3 \ 2)\}$.

Notice that all of these are cyclic (of order dividing 6).

The subgroups of S_4 are of the following types:

- The cyclic subgroups $\{e, f, f^2, ..., f^{d-1}\}$ with $f^d = e$.
 - Typical examples are the subgroups:
 - $\{e, (1 \ 2), (1 \ 2 \ 3), (1 \ 3)\}$, $\{e, (1 \ 2 \ 3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4 \ 3 \ 2)\}$
 - $\{e, (1 \ 2)(3 \ 4)\}$
 - The Klein group (isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$):
 - $K_4 := \{e, (1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3)\}$
 - The four subgroups (isomorphic to S_3) each fixing one element of $[4]$:
 - $H_i = \{f : [4] \to [4] \mid f(i) = i\}$ for $i = 1, 2, 3, 4$
 - The three dihedral subgroups (symmetries of a square) with 8 elements each.
 - The group A_4 of rotations of a regular tetrakihedron (with 12 elements):
 - $\{e, (\ast \ast \ast), (\ast \ast)(\ast \ast)\}$
Observation. S_4 is the group of rotational symmetries of a cube, permuting the four long diagonals (joining pairs of opposite vertices). This group also permutes the three short diagonals (joining midpoints of opposite faces), resulting in a surjective group homomorphism:

$$S_4 \to S_3 \to 1$$

with kernel equal to the Klein group K_4, which is therefore a normal subgroup.

There is another way to see that the Klein group is normal:

Conjugacy Classes. Let G be a group. Then:

$$h_1 \sim h_2 \text{ if and only if } h_2 = c_g(h_1) = gh_1g^{-1} \text{ for some } g \in G$$

defines an equivalence relation on G. The equivalence classes $\text{Cl}(h)$ for this relation are the conjugacy classes of G.

Thus a subgroup $N \subset G$ is normal if and only if it is a union of conjugacy classes.

Proposition 5. The conjugacy classes of S_n are in bijection with the partitions

$$n = d_1 + d_2 + \cdots + d_k \text{ (in weakly decreasing order) } d_1 \geq d_2 \geq \cdots \geq d_k$$

corresponding to the permutations of the form $C_1 \cdots C_k$ with $|C_i| = d_i$.

Remark. This ordering of cycles may not conform to the “unique” form.

Proof. When $C = (a_1 a_2 a_3 \cdots a_d)$ is conjugated by $f \in S_n$, the result is:

$$f \circ C \circ f^{-1} = (f(a_1) f(a_2) \cdots f(a_d))$$

since

$$f \circ C \circ f^{-1}(f(a_i)) = f \circ C(a_i) = f(a_{i+1})$$

i.e. it is another cycle of the same length with entries specified by the permutation.

The proposition now follows. □

Examples. The conjugacy classes of S_2 are:

$$\text{Cl}(e) = \{e\} \text{ and } \text{Cl}(1 2) = \{(1 2)\}$$

In fact, the conjugacy classes of any abelian group are the singleton sets.

There are three conjugacy classes of S_3, corresponding to the partitions:

$$3 = 3 \text{ with } \{(***\}) = \text{Cl}(1 2 3) = \{(1 2 3), (1 3 2)\}$$

$$3 = 2 + 1 \text{ with } \{(**)\} = \text{Cl}(1 2) = \{(1 2)(3),(1 3)(2), (2 3)(1)\}$$

(and recall that we’ve agreed to suppress the singletons from the notation), and

$$3 = 1 + 1 + 1 \text{ with Cl}(e) = \{e\}$$

Comparing with the list of subgroups, we see that:

$$\{e, (1 2 3), (1 3 2)\} = \text{Cl}(e) \cup \{(***)\}$$

is the only (nontrivial) normal subgroup of S_3.

Moving on to S_4, we see that the conjugacy classes are:

$$\{(****), \{**\}, \{**\}, \{**\}, \{e\}\}$$

corresponding, in order, to the partitions $4, 3+1, 2+1+1, 2+2, 1+1+1+1$.

Thus we get another verification that K_4 is a normal subgroup since:

$$K_4 = \{e\} \cup \{**\}$$
Similarly, the alternating group A_4 is normal since:

$$A_4 = \{e\} \cup \{(*)(**), (**)(*)\} \cup \{(*)(*)\}$$

and as a bonus, we see that K_4 is a normal subgroup of A_4.

Proposition 6. There is a “sign” group homomorphism:

$$\text{sgn} : S_n \to \{\pm 1\}, \cdot$$

with the property that $\text{sgn}(a b) = -1$ for all transpositions (two-cycles) (a, b).

Corollary. The sign of a d-cycle is $(-1)^{d-1}$ since

$$(a_1 a_2 \cdots a_d) = (a_1 a_2)(a_2 a_3) \cdots (a_{d-1} a_d).$$

Proof. We need a definition of the sign. Given $f : [n] \to [n]$, let:

$$\text{sgn}(f) = \prod_{1 \leq i < j \leq n} \frac{f(j) - f(i)}{j - i}$$

Then:

(i) Each factor is unchanged if i and j are switched.

(ii) Applying f permutes the two-element subsets of $[n]$.

Thus by (i), the product may be unambiguously taken over the set of two-element subsets of $[n]$ (instead of pairs $i < j$), and by (ii), we have:

$$\prod_{\{i,j\}} |j - i| = \prod_{\{f(i),f(j)\}} |f(j) - f(i)| = \prod_{\{i,j\}} |f(j) - f(i)|$$

so $|\text{sgn}(f)| = 1$.

(iii) The sgn function is a group homomorphism. Given $f_1, f_2 : [n] \to [n]$,

$$\prod_{\{i,j\}} \frac{f_2(f_1(j)) - f_2(f_1(i))}{j - i} = \prod_{\{i,j\}} \frac{f_2(f_1(j)) - f_2(f_1(i))}{f_1(j) - f_1(i)} \cdot \prod_{\{i,j\}} \frac{f_1(j) - f_1(i)}{j - i}$$

$$= \prod_{\{i,j\}} \frac{f_2(f_1(j)) - f_2(f_1(i))}{f_1(j) - f_1(i)} \cdot \prod_{\{i,j\}} \frac{f_1(j) - f_1(i)}{j - i}$$

$$= \prod_{\{f_1(i),f_1(j)\}} \frac{f_2(f_1(j)) - f_2(f_1(i))}{f_1(j) - f_1(i)} \cdot \prod_{\{i,j\}} \frac{f_1(j) - f_1(i)}{j - i}$$

again using (i) and (ii).

(iv) Applying $\tau = (a b)$ (with $a < b$) has the following effect on pairs $(i < j)$.

(a) Pairs $(i < j)$ with $i = a$ and $j \in [a + 1, b]$ satisfy $(\tau(i) > \tau(j))$

(b) Pairs $(i < j)$ with $i \in [a, b - 1]$ and $j = b$ satisfy $(\tau(i) > \tau(j))$

(c) All other pairs satisfy $(\tau(i) < \tau(j))$.

Thus, counting the sign switches in (a) and (b), we get:

$$(b - a) + (b - a)$$

but the pair $(i, j) = (a, b)$ is counted twice, so there are an odd number overall. □
Definition. The *alternating group* A_n is the kernel of the sign homomorphism:

$$\text{sgn} : S_n \rightarrow \{\pm 1\}$$

and therefore it is a normal subgroup of S_n, with two cosets, and

$$|S_n| = 2|A_n|$$

by Lagrange’s Theorem.

Looking back over the examples, we see that:

- $\text{sgn}(\ast \ast) = -1$,
- $\text{sgn}(\ast \ast \ast) = 1$,
- $\text{sgn}(\ast \ast \ast \ast) = -1$,
- $\text{sgn}(\ast \ast)(\ast \ast) = 1$

so that the normal cyclic subgroup of S_3 is A_3, and A_4 is indeed aptly named.

One More Example. The alternating group A_5 consists of:

$$\{e, (\ast \ast), (\ast \ast)(\ast \ast) \text{ and } (\ast \ast \ast \ast \ast)\}$$

We will see that this group with 60 elements, unlike $K_4 \subset A_4$, has no non-trivial normal subgroups.