Localization

Let \(D \) be an integral domain.

Definition. A subset \(S \subset D \) is multiplicative if:

\[
0 \not\in S, 1 \in S \text{ and } s, t \in S \text{ implies } st \in S
\]

Examples.

(a) The abelian group \(D^* \) of units in \(D \) is multiplicative.

(b) The set \(\{1, f, f^2, ..., \} \) of powers of \(f \neq 0 \) is multiplicative.

(c) The complement of an ideal \(I \subset D \) is multiplicative if and only if \(I \) is prime.

Proposition 1. Given a multiplicative subset \(S \subset D \), let:

\[
S^{-1}D = \left\{ \frac{r}{s} \mid r \in D, s \in S \right\} / \sim
\]

where

\[
\frac{r_1}{s_1} \sim \frac{r_2}{s_2} \text{ if and only if } r_1s_2 - r_2s_1 = 0
\]

and equip \(S^{-1}D \) with fraction addition and multiplication:

\[
\frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1s_2 + r_2s_1}{s_1s_2} \quad \text{and} \quad \frac{r_1}{s_1} \cdot \frac{r_2}{s_2} = \frac{r_1r_2}{s_1s_2}
\]

Then \(S^{-1}D \) is an integral domain with \(0 = \frac{0}{1}, 1 = \frac{1}{1} \) and injective homomorphism:

\[
f : D \to S^{-1}D \text{ given by } f(r) = \frac{r}{1}
\]

Proof. This mainly amounts to proving well-definedness.

(i) \(\sim \) is an equivalence relation. Transitivity is the only non-obvious property:

\[
r_1s_2 - r_2s_1 = 0, r_2s_3 - r_3s_2 = 0 \Rightarrow
s_2(r_1s_3 - r_3s_1) = s_3(r_1s_2 - r_2s_1) + s_1(r_2s_3 - r_3s_2) = 0
\]

\[
\Rightarrow r_1s_3 - r_3s_1 = 0
\]

(ii) Addition is determined by passing to common denominators:

\[
\frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1s_2 + r_2s_1}{s_1s_2}
\]

as well as the distributive law and requirement that:

\[
\frac{r}{1} \cdot \frac{1}{s} = \frac{r}{s}
\]

which also determines multiplication. But you should check this is well-defined.

(iii) \(S^{-1}D \) is an integral domain, since:

\[
\frac{r_1r_2}{s_1s_2} = 0 \text{ if and only if } r_1r_2 = 0 \text{ if and only if either } r_1 = 0 \text{ or } r_2 = 0
\]

since \(D \) has no zero divisors.

Remarks.

(a) If \(S \subset D^* \), then \(f : D \to S^{-1}D \) is an isomorphism with

\[
\frac{r}{s} = \frac{s^{-1}r}{1}
\]
(b) If \(S = D - \{0\} \), then \(S^{-1}D \) is a field. This is the field of fractions \(k(D) \) of the domain \(D \). All other domains \(S^{-1}D \) sit in between \(D \) and the field of fractions:

\[
D \subset S^{-1}D \subset k(D)
\]

(c) If \(S = \{1, f, \ldots\} \), then \(S^{-1}D \) is denoted by \(D_f \), and:

\[
q : D[x] \to D_f; \ q(x) = 1/f \text{ is surjective with kernel } I = (1 - fx)
\]

so \(D_f \) is a quotient ring of the polynomial ring.

(d) If \(S = P^c \) for \(P \subset D \), then \(S^{-1}D \) is denoted by \(D_P \). This is usually not a quotient ring of a polynomial ring \(D[x_1, \ldots, x_n] \) with any (finite) number of variables. We’ll see this when we prove the Hilbert Nullstellensatz.

Concrete Example. Let \(D = \mathbb{Z} \). Then:

(a) \(k(\mathbb{Z}) = \mathbb{Q} \), the field of rational numbers.

(b) \(\mathbb{Z}_n = \mathbb{Z}[\frac{1}{n}] \) are the rational numbers whose denominators (in lowest terms) divide some power of \(n \). Note that:

\[
\mathbb{Z}_n = \mathbb{Z}_{p_1, \ldots, p_r} = \mathbb{Z}[\frac{1}{p_1}, \ldots, \frac{1}{p_r}]
\]

where \(p_1, \ldots, p_r \) are the distinct prime factors of \(n \).

(c) \(\mathbb{Z}_{(p)} \) are the rational numbers whose denominators (in lowest terms) are not divisible by \(p \). Sometimes this is written \(\mathbb{Z}_p \), which is confusing given (b). In fact, there are a whole lot of rings that might be written as \(\mathbb{Z}_p \), so context is everything!

Let \(D \) be a UFD. Then an element:

\[
\frac{r}{s} \in k(D)
\]

is in lowest terms if the prime factorizations of \(r \) and \(s \) contain no associated common primes. This ratio is, moreover, unique up to multiplying numerator and denominator by the same unit in \(D \). A polynomial \(f(x) \in D[x] \) is in lowest terms if the factorizations of the coefficients of \(f(x) \) contain no associated common primes.

Gauss’ Lemma relies on:

Proposition 2. If \(f(x), g(x) \in D[x] \) are in lowest terms, then so is \(f(x)g(x) \).

Proof. Let \(f(x) = a_dx^d + \ldots + a_0 \), \(g(x) = b_ex^e + \ldots + b_0 \) and let \(p \in D \) be prime. Then \(p \) does not divide all the \(a \)'s and it does not divide all the \(b \)'s, so:

\[
p \text{ divides } a_0, \ldots, a_{k-1} \text{ but not } a_k \text{ and } p \text{ divides } b_0, \ldots, b_{l-1} \text{ but not } b_l
\]

for some \(k \leq d \) and \(l \leq e \). Then \(p \) does not divide the coefficient:

\[
\cdot a_{k+1}b_{l-1} + a_kb_l + a_{k-1}b_{l+1} + \cdots
\]

of \(x^{k+l} \) in the product \(f(x)g(x) \). So the product is in lowest terms! \(\square \)

Now we can prove:

Gauss’ Lemma. If \(D \) is a UFD, then \(D[x] \) is a UFD.

Proof. First of all, \(k(D)[x] \) is a Euclidean domain, so it is also a PID and UFD. Now suppose \(f(x) \in D[x] \). Since a prime in \(D \) is also a prime in \(D[x] \), we may remove all the common prime factors of the coefficients of \(f(x) \) and write it as

\[
p_1 \cdots p_r \cdot g(x) \text{ where } g(x) \in D[x] \text{ is lowest terms}
\]
We may factor the polynomial \(g(x) \) in the Euclidean domain \(k(D)[x] \) to get:
\[
g(x) = h_1(x) \cdots h_s(x)
\]
where each \(h_i(x) \in k(D)[x] \) is prime.

There are now unique fractions (in lowest terms) so that the polynomials:
\[
q_i(x) = \left(\frac{r_i}{s_i} \right) h_i(x) \in D[x]
\]
are in lowest terms and then it follows from the Proposition that both:
\[
g(x) \quad \text{and} \quad q_1(x) \cdots q_s(x) = \left(\prod \frac{r_i}{s_i} \right) g(x) = \left(\frac{r}{s} \right) g(x) \in D[x]
\]
are in lowest terms.

It follows that \(r \) and \(s \) (chosen to have no common prime factors) have no prime factors at all! So \(u = r/s \in D^* \) and:
\[
f(x) = u^{-1} p_1 \cdots p_r \cdot q_1(x) \cdots q_s(x)
\]
is the desired factorization into primes. \(\square \)

Example. In \(\mathbb{Q}[x] \), we have:
\[
x^2 - 1 = \left(\frac{2}{3} x - \frac{2}{3} \right) \left(\frac{3}{2} x + \frac{3}{2} \right)
\]
which we can put into (slightly inefficient, to play devil’s advocate) lowest terms:
\[
- \frac{3}{2} \left(\frac{2}{3} x - \frac{2}{3} \right) = -x + 1 \quad \text{and} \quad \frac{2}{3} \left(\frac{3}{2} x + \frac{3}{2} \right) = x + 1
\]
and then
\[
x^2 - 1 = (-1)(-x + 1)(x - 1) \quad \text{with the unit } u = -1
\]

Eisenstein’s Criterion. If \(D \) is a UFD, \(f(x) \in D[x], p \in D \) is a prime and:

(a) \(p \) divides all the coefficients of \(f(x) \) except the leading coefficient.

(b) \(p^2 \) does not divide the constant term of \(f(x) \).

Then \(f(x) \) is irreducible as a polynomial in \(k(D)[x] \).

Proof. By Gauss’ lemma, if \(f(x) \) is reducible in \(k(D)[x] \), then it factors:
\[
f(x) = g(h(x))h(x)
\]
by polynomials of smaller degree in \(D[x] \).

Let \(pD \subset D \) be the ideal generated by \(p \) and note that \(pD[x] \subset D[x] \) is also a prime ideal, since:
\[
D[x]/pD[x] = (D/p)[x]
\]
By (a) above, if we let \(\overline{f}(x) = f(x) + pD[x] \), then we have:
\[
a_d x^d = \overline{f}(x) = \overline{g}(x) \cdot \overline{h}(x) \in (D/p)[x]
\]
from which it follows that:
\[
\overline{g}(x) = bx^d \quad \text{and} \quad \overline{h}(x) = cx^{d-e} \quad \text{for some } e < d \quad \text{and} \quad b, c \in D/pD
\]
But then \(p \) divides the constant terms of \(g(x) \) and \(h(x) \), which violates (b). \(\square \)

Example. The polynomials:
\[
x^{a-1} + x^{a-2} + \cdots + 1 = \frac{x^a - 1}{x - 1} \in \mathbb{Q}[x]
\]
are irreducible if and only if \(a \) is a prime number. If \(a = bc \), then \(x^b - 1 \mid x^a - 1 \).
If \(a = p \) is prime, apply Eisenstein to \((x + 1)^p - 1\) using the binomial theorem.
Next, let \(P \subset D \) be a prime ideal in an integral domain and let:
\[
D \subset D_P = S^{-1}D
\]
be the inclusion of domains in Proposition 1

Proposition 3.

(a) There is a unique maximal ideal \(\mathfrak{m}_P \subset D_P \).

(b) There are maps between the set of ideals in \(D_P \) and the set of ideals in \(P \):
\[
\{ \text{ideals } J_P \subset D_P \} \leftrightarrow \{ \text{ideals } J \subset P \subset D \}
\]
\[
J_P \mapsto D \cap J_P = \{ a \in D \mid \frac{a}{1} \in J_P \}; \quad J \mapsto J_P := \{ \frac{a}{s} \mid a \in J, s \notin P \} / \sim
\]
that satisfy:
\[
J \subset (J_P \cap D) \text{ and } (J_P \cap D)_P = J_P
\]
Moreover, if \(Q \subset D \) is a prime ideal, then \(Q_P \subset D_P \) is also prime and \(Q = (Q_P \cap D) \).

Thus there is a bijection:
\[
\{ \text{prime ideals } Q_P \subset D_P \} \leftrightarrow \{ \text{prime ideals } Q \subset P \subset D \}
\]
and in particular, \(\mathfrak{m}_P \) maps to \(P \) under the bijection.

Example. Consider the prime ideal \(P = 2\mathbb{Z} \). Then \(\mathbb{Z}_P \) has only the ideals:
\[
\{0\} \text{ and } \mathfrak{m}^k = \left\{ \frac{a}{s} \mid 2^k \text{ divides } a \text{ and } s \text{ is odd} \right\}
\]
but there are lots more ideals contained in \(2\mathbb{Z} \) than the ideals \(2^k\mathbb{Z} \).

Definition. In general, the ideal \(\text{sat}(J) = J_P \cap D \) is called the saturation of \(J \subset P \) with respect to \(P \) and an ideal \(J \subset P \) is saturated if \(J = \text{sat}(J) \).

The Proposition says that prime ideals are saturated.

Exercise. Check that \(\text{sat}(J) = \text{sat}(\text{sat}(J)) \), so saturations of ideals are saturated!

Proof of Prop 3. We already know that \(I \cap D \subset D \) is an ideal when \(I \subset D_P \) is an ideal and it is prime when \(I \) is prime. Likewise, if \(J \subset D \) is an ideal, then:
\[
J_P = \left\{ \frac{a}{s} \mid a \in J, s \in S \right\} \subset D_P
\]
is closed under sums as well as products with elements \(r/s \), so \(J_P \subset D_P \) is an ideal.

It is a little problematic to think of the ideal in this way, though, because of the equivalence of fractions, since it is possible to have \(r/s \in J_P \) without having \(r \in J \).

Instead, we will use the alternative formulation:
\[
J_P = \{ x \in D_P \mid x s \in J \text{ for some } s \in S \}
\]
Now suppose \(Q \subset P \subset D \) is prime, and \(xy \in Q_P \) for some \(x, y \in D_P \). Then:
\[
x s_1, y s_2 \in D \text{ and } x y s \in Q \text{ for some } s_1, s_2, s \notin P \text{ so } (x s_1)(y s_2)s \in Q \text{ and } x s_1 \text{ or } y s_2 \in Q
\]
so \(Q_P \) is prime. Moreover, primeness of \(Q \) implies that:
\[
x \in D \text{ and } x s \in Q \Rightarrow x \in Q
\]
from which it follows that \(Q_P \cap D = Q \). The equality \(Q_P = (Q_P \cap D)_P \) is easy. \(\square \)

Example. The localizations of polynomial rings:
\[
k[x_1, \ldots, x_n]_{\mathfrak{m}_P} = \left\{ \frac{f}{g} \mid f, g \in k[x_1, \ldots, x_n] \text{ and } g(p) \neq 0 \right\}
\]
at the maximal ideal kernels of \(\text{ev}_p : k[x_1, \ldots, x_n] \to k; \text{ev}_p(f) = f(p) \) are the rings of rational functions that are defined in a neighborhood of \(p \).
Definition. A commutative ring R with 1 is a local ring if R has a unique maximal ideal m which (Zorn’s Lemma) necessarily contains all other ideals $I \subset R$.

Remark. In a local ring R, every element of the complement m^c is a unit.

Aside from the fields, we’ve seen one local ring persistently in our examples: $R = k[[x]]$ with maximal ideal $m = \langle x \rangle$

but now we have a machine for producing local rings (D, P, m) from any pair (D, P) consisting of a domain and a prime ideal.

We finish with an important class of rings (the next simplest after the fields).

Definition. A Noetherian domain D satisfying:

(i) D is a local ring with (non-zero) maximal ideal m.

(ii) $m = \langle \pi \rangle$ is principal

is called a discrete valuation ring (DVR).

Proposition 3. Every element $a \in D$ in a DVR is a product:

$$u\pi^r$$

for a unique r and $u \in D^*$

Thus the only ideals in a DVR are the principal ideals $m^r = \langle \pi^r \rangle$ for $r \geq 1$.

Proof. Every irreducible element $a \in D$ is of the form:

$$a = u\pi$$

since $a \in \langle \pi \rangle$ is divisible by π, which is not a unit (hence it is an associate of a).

Thus the factorization of an arbitrary: $b = a_1 \cdots a_r$ as a product of irreducibles is

$$b = (u_1\pi) \cdots (u_r\pi) = u\pi^r$$

and the uniqueness is clear by cancellation. For the rest of the proof, note that:

$$\langle u_1\pi^{r_1}, \ldots, u_n\pi^{r_n} \rangle = \langle u_1\pi^{r_1} \rangle$$

if $r_1 \leq \cdots \leq r_n$ □

Thus in particular, a DVR is a local PID (and conversely).

Let D be a DVR and let $k(D)$ be the field of fractions. Then:

$$k(D) = \{ u\pi^r \mid u \in D^* \text{ and } r \in \mathbb{Z} \}$$

and the mapping:

$$\nu : k(D)^* \to \mathbb{Z}; \nu(u\pi^r) = r$$

has the following properties:

(i) $\nu(ab) = \nu(a) + \nu(b)$

(ii) $\nu(a + b) \leq \min(a, b)$ with equality when $\nu(a) \neq \nu(b)$.

(iii) $D = \{ a \in k(D) \mid \nu(a) \geq 0 \}$ and $m = \{ a \in k(D) \mid \nu(a) \geq 1 \}$.

A mapping from a field to an ordered abelian group satisfying (i) and (ii) is a valuation, and when the ordered abelian group is \mathbb{Z}, then the mapping is a discrete valuation. Hence the name.

Definition. A domain D with the property that localization D_P at each non-zero prime ideal is a DVR is called a Dedekind domain.

Remark. In number theory, these are the rings of integers in a number field and in algebraic geometry, these are the (coordinate rings of) smooth affine curves.