Riemann Surfaces and Graphs 4. Tropical Linear Series

In §1, an equivalence relation among divisors on graphs was defined via a series of chip-firings which were collected into a single effective divisor:

$$\sum_{v} c_v \cdot v \in V_d$$

If we instead think of this as a function $\phi : V \to \mathbb{Z}$; $\phi(v) = c_v$ then chip-firings fit into the linear equivalence definition from §3 if we let:

$$\operatorname{ord}_{v}(\phi) = \sum_{\text{neighbors } w \text{ of } v} (\phi(w) - \phi(v)) \quad \text{and } \operatorname{div}(\phi) = \sum_{v} \operatorname{ord}_{v}(\phi) \cdot v$$

because in that case $D + \operatorname{div}(\phi)$ is the divisor obtained from D by firing according to the divisor $\sum c_v \cdot v$. Indeed, with this definition,

$$\operatorname{div}(\phi + \psi) = \operatorname{div}(\phi) + \operatorname{div}(\psi)$$

and firing from $v \in V$ is $D \rightsquigarrow D + \operatorname{div}(1_v)$ for the indicator function of v.

In the context of meromorphic functions on Riemann surfaces, $\operatorname{div}(\phi)$ converted *multiplication* (of functions) to addition (of divisors), and sums of meromorphic functions satisfied the following property which in this context is played by the *maximum*:

Lemma 4.1. If $\phi, \psi : V \to \mathbb{Z}$ and $\operatorname{ord}_{v}(\phi) \geq d$ and $\operatorname{ord}_{v}(\psi) \geq d$, then:

$$\operatorname{ord}_v(\max\{\phi,\psi\}) \ge d$$

Proof. Without loss of generality, let $\phi(v) \ge \psi(v)$ and $\theta = \max\{\phi, \psi\}$. Then $\theta(w) - \theta(v) \ge \phi(w) - \phi(v)$ for all neighbors w of v.

This allows us to both interpret |D| as a *tropical* projective space, and extend the definition of equivalence under "chip firing" to *metric graphs*.

Definition 4.2. *Tropical arithmetic* on the real numbers is:

$$x \cdot_T y := x + y \text{ and } x +_T y := \max\{x, y\}$$

Exercise. With one exception, tropical arithmetic satisfies the properties of ordinary arithmetic, including the existence of the tropical additive identity when \mathbb{R} is augmented to the *tropical numbers* $\mathbb{T} := \mathbb{R} \cup \{-\infty\}$. The one exception is the non-existence of tropical additive identities of real numbers.

Definition 4.3. A tropical vector space is a set of vectors with a commuting addition and scalar multiplication by tropical numbers satisfying all the properties of a vector space except for the existence of additive inverses.

Example. (a) \mathbb{T}^m is free *m*-space. It can be visualized as an infinite orthant.

(b) The tropical span of vectors $\vec{v}_1, ..., \vec{v}_n \in \mathbb{T}^m$ is the linear subspace:

$$\langle \vec{v}_1, \cdots \vec{v}_n \rangle := \left\{ \sum_T c_i \cdot_T \vec{v}_i := c_1 \cdot_T \vec{v}_1 +_T \cdots +_T c_n \cdot_T \vec{v}_n; \ c_i \in \mathbb{T} \right\}$$

That is, if $\vec{v}_i = (a_{i,1}, ..., a_{i,m})$, then:

$$\sum_{T} c_i \cdot_T v_i = \left(\dots, \max_i \{ c_i + a_{i,j} \}, \dots \right)$$

(c) Tropical linear subspaces of \mathbb{T}^m do not behave as vector subspaces. There are tropical subspaces of \mathbb{T}^3 requiring uncountably many generators! **Exercise.** Describe the tropical linear subspaces of \mathbb{T}^3 spanned by:

> (i) (-1, 0, 0), (0, -1, 0) and (1, 1, 0)(ii) (1, 0, 0), (0, 1, 0) and (-1, -1, 0)

Definition 4.4. If *L* is a tropical linear space, then:

$$\mathbb{P}(L) = \{L - \text{origin}\}/\mathbb{R}$$

where \mathbb{R} acts on L by addition (= tropical scalar multiplication).

Examples. (0) $\mathbb{P}(\mathbb{T}^1)$ is a point.

- (i) $\mathbb{P}(\mathbb{T}^2)$ is an infinite closed line segment.
- (ii) $\mathbb{P}(\mathbb{T}^3)$ is an infinite triangle.
- (iii) $\mathbb{P}(\mathbb{T}^m)$ is an infinite simplex.

As is the case with \mathbb{CP}^n , we can coordinatize $\mathbb{TP}^n = \mathbb{P}(\mathbb{T}^{n+1})$ with:

$$(c_0:\ldots:c_n) \sim (c_0 + \lambda: \cdots: c_n + \lambda)$$
 for $\lambda \in \mathbb{R}$

and realize \mathbb{TP}^n as a union of subsets $U_i = \mathbb{T}^n$ or else as $U_0 \cup \mathbb{TP}^{n-1}$, the "points at infinity." From this point of view, the tropical projective plane is the infinite quadrant together with an infinite line segment interpolating between $(-\infty, +\infty)$ and $(+\infty, -\infty)$.

Examples. (i) The linear subspaces of \mathbb{TP}^1 are points and closed intervals.

(ii) The one-dimensional linear subspaces of \mathbb{TP}^2 are coordinate axes or else they have a "center" from which three segments emanate orthogonal to the coordinate axes.

Definition 4.5. A tropical polynomial f(x) in one variable is:

$$f(x) = c_0 +_T c_1 \cdot_T x +_T \dots +_T c_d \cdot_T x^d$$

= max{c_0, c_1 + x, ..., c_d + dx}

and a tropical rational function is $\phi(x) = f(x) - g(x)$ (ordinary subtraction), which extends to a function $\phi : \mathbb{TP}^1 \to \mathbb{TP}^1$.

Definition 4.6. The graph of a tropical polynomial (or rational function) is the piecewise linear (integer slope) graph of the function $\phi : \mathbb{TP}^1 \to \mathbb{TP}^1$.

Definition 4.7. Given ϕ , let:

$$\operatorname{ord}_t(\phi) = \sum \operatorname{outward \ slopes \ of \ } \phi \ \operatorname{at \ } t$$

(this is zero outside of the finitely many break points of the graph) and

$$\operatorname{div}(\phi) = \sum_{t \in \mathbb{TP}^1} \operatorname{ord}_t(\phi) \cdot t$$

is divisor of degree zero.

Remark. Given any divisor $D = \sum d_i \cdot t_i \in \mathbb{Z}[\mathbb{TP}^1]_0$, the rational functions:

$$\phi(t) = \lambda \cdot_T \prod_T (x +_T t_i)^{d_i} = \lambda + \sum_i d_i \max\{x, t_i\}$$

for $\lambda \in \mathbb{R}$ all satisfy $\operatorname{div}(\phi) = D$. This is a version of the fundamental theorem of algebra for the tropical numbers.

With this reformulation, we may generalize the chip-firing equivalence relation to a relation on divisors on metric graphs.

Definition 4.8. A *metric graph* Γ is a finite combinatorial graph together with the extra data:

 $\delta: E \to \mathbb{R}^{>0}$

making Γ into a *metric space* in which the edge *e* has (linear) length $\delta(e)$ via the shortest path metric. The topology induced on Γ by this metric is a refinement of the coarse topology in §0 on the combinatorial graph.

A *divisor* on Γ is an element of $\mathbb{Z}[\Gamma]$. Elements of Γ_d are effective divisors.

Convention. A combinatorial graph Γ is generally given the structure of a metric graph by setting $\delta(e) = 1$ for all edges e.

Enhancement. Infinite length half-edges may be added to a finite metric graph, which may be capped off with a vertex "at infinity" at the cost of introducing a point at an infinite distance from the rest of the graph. Notice that \mathbb{TP}^1 itself is of this form, with two vertices at infinity.

Definition 4.9. A tropical rational function on a metric (enhanced) graph Γ is a piecewise linear function $\phi : \Gamma \to \mathbb{R}$ (or \mathbb{TP}^1) with integer slopes, with:

$$\operatorname{ord}_x \phi = \sum \operatorname{outward \ slopes \ of \ } \phi \ \text{at } x \in \Gamma \ \text{and \ } \operatorname{div}(\phi) = \sum_{x \in \Gamma} \operatorname{ord}_x(\phi) \cdot x$$

Notice that at non-vertices, there are always two outward slopes, and $\operatorname{div}(\phi)$ is a finite sum, but that for vertices $v \in \Gamma$, there are $\operatorname{val}(v)$ such slopes. We now define linear equivalence \sim and linear series |D| for divisors on metric graphs as in §3, and we note that the linear series of a combinatorial graph is exactly the subset of divisors in |D| for the associated metric graph with unit side lengths that are supported on the vertices of the graph.

The following Lemma generalizes Corollary 1.5.

Lemma 4.10. If Γ is a metric tree, then $p \sim q$ for all $p, q \in \Gamma$.

Proof. Let *P* be the unique path from *p* to *q*, and let ϕ be a linear function on *P* with slope -1 along the path from *p* in the directon of *q*. Complete this to a function on the tree Γ by extending by constant functions. Then div $(\phi) = q - p$, and so $p \sim q$.

On the other hand, consider the circle S^1 (of unit circumference). Then a divisor $D = \sum d_i \theta_i \in \mathbb{Z}[S^1]_0$ satisfies $D = \operatorname{div}(\phi)$ for a piecewise linear function $\phi: S^1 \to \mathbb{R}$ with integer slopes if and only if:

$$\sum_{d_i} d_i \theta_i = 0 \text{ as a point of } S^1$$

(compare with Lemma 2.11).

In particular, we get the following generalization of Corollary 1.8.

Corollary 4.11. If Γ has a circuit, then $p \not\sim q$ for points of the circuit. **Exercise.** (i) Identify the linear series |D| of degree d on \mathbb{TP}^1 with \mathbb{TP}^d .

- (ii) Analyze the linear series $|2\theta|$ and $|3\theta|$ for $\theta \in S^1$.
- (iii) Prove that $(S^1)_2$ is a Möbius strip. Describe $(S^1)_3$.

Tropical Plane Curves