
Riemann Surfaces and Graphs
4. Tropical Linear Series

In §1, an equivalence relation among divisors on graphs was defined via
a series of chip-firings which were collected into a single effective divisor:∑

v

cv · v ∈ Vd

If we instead think of this as a function φ : V → Z; φ(v) = cv then
chip-firings fit into the linear equivalence definition from §3 if we let:

ordv(φ) =
∑

neighbors w of v

(φ(w)− φ(v)) and div(φ) =
∑
v

ordv(φ) · v

because in that case D + div(φ) is the divisor obtained from D by firing
according to the divisor

∑
cv · v. Indeed, with this definition,

div(φ+ ψ) = div(φ) + div(ψ)

and firing from v ∈ V is D  D + div(1v) for the indicator function of v.

In the context of meromorphic functions on Riemann surfaces, div(φ)
converted multiplication (of functions) to addition (of divisors), and sums of
meromorphic functions satisfied the following property which in this context
is played by the maximum:

Lemma 4.1. If φ, ψ : V → Z and ordv(φ) ≥ d and ordv(ψ) ≥ d, then:

ordv(max{φ, ψ}) ≥ d

Proof. Without loss of generality, let φ(v) ≥ ψ(v) and θ = max{φ, ψ}.
Then θ(w)− θ(v) ≥ φ(w)− φ(v) for all neighbors w of v.

This allows us to both interpret |D| as a tropical projective space, and
extend the definition of equivalence under “chip firing” to metric graphs.

Definition 4.2. Tropical arithmetic on the real numbers is:

x ·T y := x+ y and x+T y := max{x, y}

Exercise. With one exception, tropical arithmetic satisfies the properties of
ordinary arithmetic, including the existence of the tropical additive identity
when R is augmented to the tropical numbers T := R ∪ {−∞}. The one
exception is the non-existence of tropical additive identities of real numbers.
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Definition 4.3. A tropical vector space is a set of vectors with a commuting
addition and scalar multiplication by tropical numbers satisfying all the
properties of a vector space except for the existence of additive inverses.

Example. (a) Tm is freem-space. It can be visualized as an infinite orthant.

(b) The tropical span of vectors ~v1, ..., ~vn ∈ Tm is the linear subspace:

〈~v1, · · ·~vn〉 :=

{∑
T

ci ·T ~vi := c1 ·T ~v1 +T · · ·+T cn ·T ~vn; ci ∈ T

}

That is, if ~vi = (ai,1, ..., ai,m), then:∑
T

ci ·T vi =

(
...,max

i
{ci + ai,j}, ...

)
(c) Tropical linear subspaces of Tm do not behave as vector subspaces.

There are tropical subspaces of T3 requiring uncountably many generators!

Exercise. Describe the tropical linear subspaces of T3 spanned by:

(i) (−1, 0, 0), (0,−1, 0) and (1, 1, 0)

(ii) (1, 0, 0), (0, 1, 0) and (−1,−1, 0)

Definition 4.4. If L is a tropical linear space, then:

P(L) = {L− origin}/R

where R acts on L by addition (= tropical scalar multiplication).

Examples. (0) P(T1) is a point.

(i) P(T2) is an infinite closed line segment.

(ii) P(T3) is an infinite triangle.

(iii) P(Tm) is an infinite simplex.

As is the case with CPn, we can coordinatize TPn = P(Tn+1) with:

(c0 : .... : cn) ∼ (c0 + λ : · · · : cn + λ) for λ ∈ R

and realize TPn as a union of subsets Ui = Tn or else as U0 ∪ TPn−1, the
“points at infinity.” From this point of view, the tropical projective plane
is the infinite quadrant together with an infinite line segment interpolating
between (−∞,+∞) and (+∞,−∞).
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Examples. (i) The linear subspaces of TP1 are points and closed intervals.

(ii) The one-dimensional linear subspaces of TP2 are coordinate axes or
else they have a “center” from which three segments emanate orthogonal to
the coordinate axes.

Definition 4.5. A tropical polynomial f(x) in one variable is:

f(x) = c0 +T c1 ·T x+T · · ·+T cd ·T xd

= max{c0, c1 + x, . . . , cd + dx}

and a tropical rational function is φ(x) = f(x)−g(x) (ordinary subtraction),
which extends to a function φ : TP1 → TP1.

Definition 4.6. The graph of a tropical polynomial (or rational function)
is the piecewise linear (integer slope) graph of the function φ : TP1 → TP1.

Definition 4.7. Given φ, let:

ordt(φ) =
∑

outward slopes of φ at t

(this is zero outside of the finitely many break points of the graph) and

div(φ) =
∑
t∈TP1

ordt(φ) · t

is divisor of degree zero.

Remark. Given any divisor D =
∑
di · ti ∈ Z[TP1]0, the rational functions:

φ(t) = λ ·T
∏
T

(x+T ti)
di = λ+

∑
di max{x, ti}

for λ ∈ R all satisfy div(φ) = D. This is a version of the fundamental
theorem of algebra for the tropical numbers.

With this reformulation, we may generalize the chip-firing equivalence
relation to a relation on divisors on metric graphs.

Definition 4.8. A metric graph Γ is a finite combinatorial graph together
with the extra data:

δ : E → R>0

making Γ into a metric space in which the edge e has (linear) length δ(e)
via the shortest path metric. The topology induced on Γ by this metric is a
refinement of the coarse topology in §0 on the combinatorial graph.
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A divisor on Γ is an element of Z[Γ]. Elements of Γd are effective divisors.

Convention. A combinatorial graph Γ is generally given the structure of a
metric graph by setting δ(e) = 1 for all edges e.

Enhancement. Infinite length half-edges may be added to a finite metric
graph, which may be capped off with a vertex “at infinity” at the cost of
introducing a point at an infinite distance from the rest of the graph. Notice
that TP1 itself is of this form, with two vertices at infinity.

Definition 4.9. A tropical rational function on a metric (enhanced) graph
Γ is a piecewise linear function φ : Γ→ R (or TP1) with integer slopes, with:

ordxφ =
∑

outward slopes of φ at x ∈ Γ and div(φ) =
∑
x∈Γ

ordx(φ) · x

Notice that at non-vertices, there are always two outward slopes, and
div(φ) is a finite sum, but that for vertices v ∈ Γ, there are val(v) such slopes.
We now define linear equivalence ∼ and linear series |D| for divisors on
metric graphs as in §3, and we note that the linear series of a combinatorial
graph is exactly the subset of divisors in |D| for the associated metric graph
with unit side lengths that are supported on the vertices of the graph.

The following Lemma generalizes Corollary 1.5.

Lemma 4.10. If Γ is a metric tree, then p ∼ q for all p, q ∈ Γ.

Proof. Let P be the unique path from p to q, and let φ be a linear
function on P with slope −1 along the path from p in the directon of q.
Complete this to a function on the tree Γ by extending by constant functions.
Then div(φ) = q − p, and so p ∼ q.

On the other hand, consider the circle S1 (of unit circumference). Then
a divisor D =

∑
diθi ∈ Z[S1]0 satisfies D = div(φ) for a piecewise linear

function φ : S1 → R with integer slopes if and only if:∑
di

diθi = 0 as a point of S1

(compare with Lemma 2.11).

In particular, we get the following generalization of Corollary 1.8.

Corollary 4.11. If Γ has a circuit, then p 6∼ q for points of the circuit.

Exercise. (i) Identify the linear series |D| of degree d on TP1 with TPd.
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(ii) Analyze the linear series |2θ| and |3θ| for θ ∈ S1.

(iii) Prove that (S1)2 is a Möbius strip. Describe (S1)3.

Tropical Plane Curves
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