Riemann Surfaces and Graphs
4. Tropical Linear Series

In §1, an equivalence relation among divisors on graphs was defined via
a series of chip-firings which were collected into a single effective divisor:
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If we instead think of this as a function ¢ : V. — Z; ¢(v) = ¢, then
chip-firings fit into the linear equivalence definition from §3 if we let:

ord,(¢) = > (p(w) — ¢(v))  and div(¢) = ordy(¢) - v

neighbors w of v

because in that case D + div(¢) is the divisor obtained from D by firing
according to the divisor > ¢, - v. Indeed, with this definition,

div(¢ + ¢) = div(¢) + div(v)
and firing from v € V' is D ~» D + div(1,) for the indicator function of v.

In the context of meromorphic functions on Riemann surfaces, div(¢)
converted multiplication (of functions) to addition (of divisors), and sums of
meromorphic functions satisfied the following property which in this context
is played by the mazimum:

Lemma 4.1. If ¢,v : V — Z and ord,(¢) > d and ord,(¢)) > d, then:

ord, (max{¢, ¢}) > d

Proof. Without loss of generality, let ¢(v) > 9(v) and 6 = max{¢,}.
Then 0(w) — 0(v) > ¢(w) — ¢(v) for all neighbors w of v. O

This allows us to both interpret |D| as a tropical projective space, and
extend the definition of equivalence under “chip firing” to metric graphs.

Definition 4.2. Tropical arithmetic on the real numbers is:
x-py:=xz+yand x+py:= max{z,y}

Exercise. With one exception, tropical arithmetic satisfies the properties of
ordinary arithmetic, including the existence of the tropical additive identity
when R is augmented to the tropical numbers T := R U {—oo}. The one
exception is the non-existence of tropical additive identities of real numbers.



Definition 4.3. A tropical vector space is a set of vectors with a commuting
addition and scalar multiplication by tropical numbers satisfying all the
properties of a vector space except for the existence of additive inverses.

Example. (a) T™ is free m-space. It can be visualized as an infinite orthant.

(b) The tropical span of vectors ¥y, ..., U, € T™ is the linear subspace:
(U1, Uy) 1= {ZCZ T U i=c1 7 UL +T1 T Co T Uns ¢ € T}
T

That is, if ¥; = (@i, ..., @im), then:

E Ci TV = (---,maX{Ci + aig}, >
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(c) Tropical linear subspaces of T™ do not behave as vector subspaces.
There are tropical subspaces of T? requiring uncountably many generators!

Exercise. Describe the tropical linear subspaces of T? spanned by:
(1) (—1,0,0),(0,—1,0) and (1,1,0)
(1) (1,0,0),(0,1,0) and (—1,—1,0)
Definition 4.4. If L is a tropical linear space, then:
P(L) = {L — origin}/R
where R acts on L by addition (= tropical scalar multiplication).
Examples. (0) P(T!) is a point.
(i) P(T?) is an infinite closed line segment.
(i) P(T?) is an infinite triangle.
(iii) P(T™) is an infinite simplex.
As is the case with CP", we can coordinatize TP" = P(T"*!) with:
(cotvnicn)~(co+A:i--icp+A) for \eR

and realize TP" as a union of subsets U; = T" or else as Uy U TP" !, the
“points at infinity.” From this point of view, the tropical projective plane
is the infinite quadrant together with an infinite line segment interpolating
between (—oo, +00) and (400, —00).



Examples. (i) The linear subspaces of TP! are points and closed intervals.

(ii) The one-dimensional linear subspaces of TP? are coordinate axes or
else they have a “center” from which three segments emanate orthogonal to
the coordinate axes.

Definition 4.5. A tropical polynomial f(z) in one variable is:
flx)=co+r 1 & A+ eq o x?

= max{cg,c1 +x,...,cq + dz}

and a tropical rational function is ¢(z) = f(x)—g(x) (ordinary subtraction),
which extends to a function ¢ : TP* — TP,

Definition 4.6. The graph of a tropical polynomial (or rational function)
is the piecewise linear (integer slope) graph of the function ¢ : TP! — TP!.

Definition 4.7. Given ¢, let:
ord;(¢) = Z outward slopes of ¢ at ¢

(this is zero outside of the finitely many break points of the graph) and
div(g) = Y ord(¢) -t
teTP!

is divisor of degree zero.

Remark. Given any divisor D = Y d; - t; € Z[TP'], the rational functions:

¢(t) = Xr [[(@+rta)® =X+ dimax{z,t;}
T

for A € R all satisfy div(¢) = D. This is a version of the fundamental
theorem of algebra for the tropical numbers.

With this reformulation, we may generalize the chip-firing equivalence
relation to a relation on divisors on metric graphs.

Definition 4.8. A metric graph I" is a finite combinatorial graph together
with the extra data:
§:E RO

making I' into a metric space in which the edge e has (linear) length d(e)
via the shortest path metric. The topology induced on I' by this metric is a
refinement of the coarse topology in §0 on the combinatorial graph.



A divisoron T is an element of Z[I']. Elements of Iy are effective divisors.

Convention. A combinatorial graph I' is generally given the structure of a
metric graph by setting d(e) =1 for all edges e.

Enhancement. Infinite length half-edges may be added to a finite metric
graph, which may be capped off with a vertex “at infinity” at the cost of
introducing a point at an infinite distance from the rest of the graph. Notice
that TP itself is of this form, with two vertices at infinity.

Definition 4.9. A tropical rational function on a metric (enhanced) graph
I is a piecewise linear function ¢ : I' — R (or TP!) with integer slopes, with:

ordz¢ = Z outward slopes of ¢ at x € I" and div(¢) = Z ord,(¢) - x
zel

Notice that at non-vertices, there are always two outward slopes, and
div(¢) is a finite sum, but that for vertices v € T', there are val(v) such slopes.
We now define linear equivalence ~ and linear series |D| for divisors on
metric graphs as in §3, and we note that the linear series of a combinatorial
graph is exactly the subset of divisors in |D| for the associated metric graph
with unit side lengths that are supported on the vertices of the graph.

The following Lemma generalizes Corollary 1.5.
Lemma 4.10. If I is a metric tree, then p ~ ¢ for all p,q € I

Proof. Let P be the unique path from p to ¢, and let ¢ be a linear
function on P with slope —1 along the path from p in the directon of gq.
Complete this to a function on the tree I' by extending by constant functions.
Then div(¢) = g — p, and so p ~ gq.

On the other hand, consider the circle S1 (of unit circumference). Then
a divisor D = Y d;0; € Z[S']y satisfies D = div(¢) for a piecewise linear
function ¢ : S' — R with integer slopes if and only if:

Zdiﬁi =0 as a point of S!
d;
(compare with Lemma 2.11).
In particular, we get the following generalization of Corollary 1.8.
Corollary 4.11. If T" has a circuit, then p % ¢ for points of the circuit.
Exercise. (i) Identify the linear series |D| of degree d on TP! with TP



(ii) Analyze the linear series |26| and [36] for § € S*.
(iii) Prove that (S1)s is a M&bius strip. Describe (S1)3.
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