
Riemann Surfaces and Graphs
6. The Riemann Roch Theorem

The Riemann-Roch Theorem is a relation between two vector spaces
associated to a divisor D of degree d on a Riemann surface S. Namely:

V (D) = {φ ∈ C(S)− {0} with div(φ) +D ≥ 0} ∪ {0} and

W (−D) = {ω ∈ Ω[S]− {0} with div(ω)−D ≥ 0} ∪ {0}

If D =
∑
dipi is an effective divisor, then V (D) is the vector space of

meromorphic functions on S with a pole of order ≤ di at each point pi (and
no other poles), and W (−D) is the vector space of holomorphic differentials
on S with zeroes of order ≥ di at each point pi (and no poles).

Choose a holomorphic differential ω ∈ Ω(S), and set:

KS = div(ω)

This is called a “canonical” effective divisor of degree 2g− 2, though it isn’t
actually canonical. On the other hand, once ω is chosen, then the vector
spaces V (KS −D) and W (−D) are isomorphic via the map φ 7→ φ ·ω so we
will follow the literature and replace W (−D) with V (KS −D), keeping in
mind that it is really W (−D) that we want to work with.

Note. As we saw earlier, graphs do have truly canonical divisors.

Riemann-Roch. The dimensions of V (D) and V (KS −D) satisfy:

dim(V (D))− dim(V (KS −D)) = deg(D) + 1− g

where g is the genus of the Riemann surface S.

Note. We have assumed a case of the Riemann-Roch Theorem, namely:

dim(V (0))− dim(V (KS)) = 1− g

since V (0) are the constant functions and V (KS) is isomorphic to the vector
space of holomorphic differentials, which we assumed to have dimension g.
Moreover, switching the roles of 0 and KS , we have another case:

dim(V (KS))− dim(V (0)) = g − 1 = deg(KS) + 1− g

since we have seen that deg(KS) = 2g − 2.

We begin by using residues to prove a Riemann-Roch inequality:
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Proposition 6.1. If D is linearly equivalent to an effective divisor, then:

dim(V (D))− dim(V (KS −D)) ≤ deg(D) + 1− g

Proof: We may assume D itself is effective, since V (D) ∼= V (E) and
V (KS − D) ∼= V (KS − E) whenever D ∼ E. Note that D being linearly
equivalent to an effective divisor is the same as the condition V (D) 6= 0,
and when D is effective, then the constant functions are in V (D), exhibiting
the fact that V (D) is not the zero space. Note also that when V (D) 6= 0,
then |D| 6= ∅ and dim(|D|) = dim(V (D)− 1.

Next we introduce the vector space of Laurent tails, which we define
(non-canonically) by choosing a local coordinate zi near pi with zi = 0 at the
point pi and then setting Laur(D) = {ai,−diz

−di
i + · · ·+ ai,−1z

−1
i | ai,j ∈ C},

a vector space of dimension d = deg(D). We are interested in two maps:

(i) The “tail” map:

λ : V (D)→ Laur(D)

expanding φ as a Laurent series in the variables zi and truncating, and:

(ii) The (locally defined) “residue” pairing:

Laur(D)× Ω[S]→ C

expanding ω = ψ(zi)dzi ∈ Ω[S] around each point pi, multiplying by the
Laurent tail, “reading” off the coefficients of z−1i dzi, and taking their sum.
This defines a linear map:

ρ : Laur(D)→ Ω[S]∗

(a) The kernel of λ is the vector space of constant functions.

(b) The image of ρ is the kernel of the map Ω[S]∗ →W (−D)∗, and

(c) The composition ρ ◦ λ is the zero map. In other words:

0→ C→ V (D)→ Laur(D)→ Ω[S]∗ → V (KS −D)∗ → 0

is a complex of vector spaces that is exact everywhere except possibly at the
middle term, and then it follows that:

1− dim(V (D)) + d− g + dim(V (KS −D) ≥ 0

which is the desired inequality.
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Remarkably, a significant case of the Riemann-Roch Theorem follows!

Corollary 6.2. If D and KS −D are both linearly equivalent to effective
divisors, then the Riemann-Roch equality holds for D (and KS −D).

Proof. Apply the Proposition twice!

(1) dim(V (D))− dim(V (KS −D)) ≤ deg(D) + 1− g and

(2) dim(V (KS−D))−dim(V (D)) ≤ deg(KS−D)+1−g = −(deg(D)+1−g)

Taken together, these give the Riemann-Roch equality.

Definition 6.3. A divisor D is special if D and KS −D are both linearly
equivalent to effective divisors.

Thus we have the Riemann-Roch Theorem for special divisors.

Note. Because an effective divisor has non-negative degree, a special divisor
must satisfy 0 ≤ deg(D) ≤ 2g− 2, and of course being special is symmetric;
D is special if and only if KS − D is also special. We will see that most
divisors in this degree range are not special.

Together with the results from §3, we get some nice consequences:

Proposition 6.4. If g(S) ≥ 1, the linear series |KS | is base-point free.

Proof. When g = 1, then KS ∼ 0 and |0| is base-point free.

When g ≥ 2, then each point p ∈ S is special as a divisor, since KS − p
is also effective (we can always find a non-zero differential ω with ω(p) = 0).
Thus by Corollary 6.2., we have:

dim(V (KS − p))− dim(V (p)) = deg(KS)− 1 + 1− g = g − 2

But dim(V (p)) = 1, since V (p) consists entirely of the constant functions,
otherwise S would have a meromorphic function φ ∈ C(S) with a single
pole at p, which would determine a degree one isomorphism φ : S → CP1.
Thus

dim(V (KS − p)) = g − 1 = dim(V (KS))− 1

which is to say that p is not a base point of the linear series |KS |.

Next, a definition:

Definition 6.5. A Riemann surface S of genus g ≥ 2 is hyperelliptic if
there is a meromorphic function φ ∈ C(S) such that the holomorphic map
φ : S → CP1 has degree two.

i.e. S is hyperelliptic if there is some φ ∈ C(S) with two poles.
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Example. Every Riemann surface S of genus two is hyperelliptic.

Indeed, if ω and τ are linearly independent holomorphic differentials on
S (which exist in every genus g ≥ 2), then ω = φ · τ for a non-constant
meromorphic function φ, which defines a holomorphic map φ : S → CP1 of
degree ≤ 2g− 2 (it is smaller than 2g− 2 if ω and τ share common zeroes).
When g = 2, this is therefore a map of degree exactly 2 (not 1, because in
that case, it would define an isomorphism between S and CP1, as above).

Let S be a Riemann surface of genus g ≥ 3.

Proposition 6.6. S is hyperelliptic if and only if the base-point-free linear
series |KS | fails to embed S in CPg−1.

Proof. Suppose φ : S → CP1 is a map of degree two, and let:

div(φ) = p+ q − r − s

(i.e. p and q are the zeroes of φ and r and s are the poles). Then:

dim(V (r + s)) ≥ 2 because 1, φ ∈ V (r + s)

But r+s and KS− r−s are special divisors (because dim(V (KS)) ≥ 3),
therefore the Riemann-Roch Theorem applies, and we get:

dim(V (KS − r − s))− dim(V (r + s)) = (2g − 4) + 1− g = g − 3

so dim(V (KS−r−s)) ≥ g−1 = dim(V (KS−r)) = dim(V (KS−w)). Thus,
by Proposition 3.13, the map defined by |KS | fails to be injective because r
and s have the same image (or fails to be an immersion at r if r = s).

The converse also holds. If the map associated to the linear series |KS |
either fails to be injective or fails to be an immersion, then there is a divisor
p + q with the property that V (KS − p − q) = V (KS − p) = V (KS − q)
and so by the Riemann Roch Theorem, dim(V (p + q)) ≥ 2, and there is a
(non-constant) meromorphic function φ with poles only at p and q.

RR Assignment 1. Read this and make sense of it. Then:

Prove (a), (b) and (c) in Proposition 6.1 and then (more challenging)
prove that if S is hyperelliptic, then the map to CPg−1 given by the canonical
linear series factors through the degree two map φ : S → CP1, followed by
an embedding of CP1. Conclude that the degree two map is unique, if it
exists, i.e. a hyperelliptic Riemann surface is hyperelliptic in only one way.
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What about the Riemann-Roch Theorem in general? For example, given
an effective divisor D of positive degree on a Riemann surface of genus g ≥ 1,
KS +D is linearly equivalent to an effective divisor and V (−D) = 0, so:

dim(V (KS +D)) ≤ g + deg(D)− 1

by the Riemann-Roch inequality, but Corollary 6.2 does not apply since
−D = KS − (KS +D) is not linearly equivalent to an effective divisor.

This particular example is quite important, since equality would give
the exactness of an analogue of the exact sequence in Proposition 6.1(c) for
meromorphic differentials (as opposed to a meromorphic functions):

0→W (0) = Ω[S]→W (D)→ Laur(D)→ C→ 0

which, in terms of local coordinates zi around the points pi appearing in
D, maps a meromorphic differential to its Laurent tail and maps a Laurent
tail to its “residue,” namely the sum of the coefficients ai,−1 of each z−1i .
Riemann-Roch in this context states that every Laurent tail satisfying the
“zero residue” condition is the tail of a meromorphic differential. This will
be used in the proof of Abel’s Theorem.

Definition 6.7. A divisor E dominates D if E −D is effective.

Proposition 6.8. If the Riemann-Roch Theorem holds for a divisor E that
dominates D, then D satisfies the (opposite!) Riemann-Roch inequality:

dim(V (D))− dim(V (KS −D) ≥ deg(D) + 1− g

Proof. Let E =
∑
eipi and D =

∑
dipi with di ≤ ei by assumption,

and let Laur(E,D) be the vector space of tails relative to D, i.e.

Laur(E,D) = {ai,−eiz−ei + · · ·+ ai,−di−1z
−di−1}

given a choice of local coordinate zi near each pi. This is a vector space of
dimension deg(E)− deg(D) pairing with W (−D) via the residue map:

Laur(E,D)×W (−D)→ C

which, as in the proof of Proposition 6.1 gives a complex of vector spaces:

0→ V (D)→ V (E)→ Laur(E,D)→W (−D)→W (−E)→ 0

that is exact everywhere except possibly the middle term. Then:

deg(E)−deg(D) ≥ dim(V (E))−dim(V (D)+dim(W (−D))−dim(W (−E))
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But by assumption, the Riemann-Roch Theorem holds for E, so:

deg(E)− deg(D) ≥ (deg(E) + 1− g)− (dim(V (D))− dim(W (−D))

giving the desired inequality.

Corollary 6.9. Suppose the Riemann-Roch Theorem is known for a set of
divisors on S that includes a divisor that dominates any given D. Then the
Riemann-Roch Theorem follows for all divisors D.

Proof. Given D, then by assumption both D and KS−D are dominated
by divisors for which the Riemann-Roch Theorem is known. Then as in
Corollary 6.2, the two Riemann-Roch inequalities for D and for KS − D
imply the Riemann-Roch equality.

Remark. The divisors KS+D for arbitrary effective divisor D make up a set
of divisors satisfying the criterion on Corollary 6.9, but as hinted at above, I
don’t know of a simple proof that these satisfy the Riemann-Roch equality.
Instead, we will assume that the Riemann surface is embedded in projective
space and use “hypersurface divisors” as the desired class. We have already
seen that every Riemann surface of genus ≥ 3 that is not hyperelliptic has
such an embedding. We consider instead the:

Hyperelliptic Riemann Surfaces. With the exception of finitely many
points, a complex plane curve describes a hyperelliptic Riemann surface via:

C = {(x, y) ∈ C2 | f(x, y) = y2α(x) + yβ(x) + γ(x) = 0} ⊂ C2

where f(x, y) has degree two in y and degree d = max(deg(α, β, γ)) in x.
We will also assume that α, β and γ are all degree d polynomials with no
multiple roots and no shared roots. Each fiber π−1(x0) of the projection
π : C → C to the x-axis is the set of zeroes of the polynomial:

f(x0, y) = y2α(x0) + yβ(x0) + γ(x0) which consists of:

(i) Two distinct points if α(x0) 6= 0 and ∆(x0) 6= 0, where

∆(x) = β(x)2 − 4α(x)γ(x)

is the discrminant, which we’ll assume to also be of maximal degree 2d.

(ii) One (ramified) point if ∆(x0) = 0 but α(x0) 6= 0

(iii) One non-ramified point if α(x0) = 0 but ∆(x0) = β(x0)
2 6= 0.
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The condition for C to be a (one-dimensional) complex manifold is:

f(x, y) 6= 0 or
∂f

∂x
(x, y) 6= 0 or

∂f

∂y
(x, y) 6= 0

for all points (x, y) ∈ C2. But f(x0, y0) = 0 = (∂f/∂y)(x0, y0) if and only if:

∆(x0) = 0 and y0 = − β(x0)

2α(x0)

and the additional condition (∂f/∂x)(x0, y0) = 0 is equivalent to ∆′(x0) = 0.

Thus for f(x, y) to define a Riemann surface, one only needs to be sure
that the discriminant polynomial ∆(x) has no multiple roots. Next, we
introduce a z variable to “homogenize the y variable” in f(x, y) giving:

y2α(x) + yzβ(x) + z2γ(x)

the zeroes of which, in C × CP1 add a point to C over each root of α(x),
which are the “missing” points of the projection map in case (iii) above.
Finally, we introduce a w-variable to homogenize the x variable, replacing:

α(x) by A(x,w) = wd · α(x/w), etc

or equivalently, if α(x) = a(x− r1) · · · (x− rd), then

A(x,w) = a(x− r1w) · · · (x− rdw)

This further enlarges C, adding two more points and completing it to a
closed Riemann surface S embedded in CP1 × CP1. Notice that:

π∗(x) = φ is the meromorphic function on S with two poles

defining S as a hyperelliptic Riemann surface, and:

ρ∗(y) = ψ is another meromorphic function on S with d poles

where ρ is the “other” projection to the y-axis (extended to CP1).

Proposition 6.10. The genus of S is d− 1.

Proof. By the Riemann-Hurwitz formula, since π : S → CP1 ramifies
only over the 2d zeroes of the discriminant ∆(x), we get:

2g − 2 = 2(−2) +
∑

(ep − 1) = −4 + 2d and g = d− 1
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In particular, the “extra” meromorphic function ρ∗(y) has g + 1 poles.

Proposition 6.11. Every hyperelliptic S is isomorphic to one of these.

Proof. If S, S′ are hyperelliptic Riemann surfaces of genus g with maps:

φ : S → CP1 and ψ : S′ → CP1

of degree two, ramified over the same set of points x1, ..., x2d+2 ∈ CP1, then
S ∼= S′. Thus, to prove that our construction gives all hyperelliptic curves,
we need to simply find, given distinct complex numbers x1, ...., x2d+2 ∈ C,
three polynomials α(x), β(x) and γ(x) each of degree d+ 1 such that:

∆(x) = β(x)2 − 4α(x)γ(x) = c(x− x1) · · · (x− x2d+2)

This is left to the reader as an exercise.

A Final Remark. By composing with the further embedding:

S ⊂ CP1 × CP1 → CP3

of CP1 × CP1 in CP3 as a quadric surface, we see that every hyperelliptic
curve embeds in CP3. Indeed, every Riemann surface embeds in CP3.

RR Assignment 2. 1. Read this bit and give me feedback.

2. Find a graphing calculator (e.g. desmos.com) and play with equations:

y2α(x) + yβ(x) + γ(x) = 0 of your choosing

The curves you get can be quite intricate. Share your most inspired creations
with me, and I’ll forward them to the class.

For example, explain the features of the curve:

y2(x2 − 1) + y(x2 − 6) + (x2 − 9) = 0

(Keep in mind that we can’t see all the features of the complex solutions in
this set of real solutions.)

3. Tackle the Exercise in the final Proposition.
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Embedded Riemann Surfaces. Let S ⊂ CPn be a Riemann surface
embedded in projective space. Note that by Propositions 6.6 and 6.11,
every Riemann surface of genus ≥ 2 has such an embedding, as does the
genus zero Riemann surface CP1 and the genus one surfaces C/Λ (via the
Weierstrass P function and its derivative). In fact, this is the complete list
of all closed Riemann surfaces (see Appendix A).

We prove the Riemann-Roch Theorem for embedded Riemann surfaces
by looking at the linear series of hypersurface divisors of high degree. First,
we take a detour into some graded commutative algebra. For S ⊂ CPn, let:

Id = {F ∈ C[x0, ..., xn]d | F (p) = 0 for all p = (p0 : ... : pn) ∈ S}

and I(S) =
⊕∞

d=0 Id ⊂ C[x0, ..., xn] be the homogeneous ideal of polynomials
that “carve out” S in CPn in the sense of Lemma 3.6. We will also assume
that S ⊂ CPn is not contained in any hyperplane, i.e. that I0 = I1 = 0.

The homogeneous coordinate ring:

C[S] := C[x0, ..., xn]/I(S) =
∞⊕
d=0

C[S]d

is the quotient by this ideal, which is graded (since I is homogeneous), and:

hS(d) = dim (C[S]d)

is the Hilbert function of S. Note that hS(0) = 1 and hS(1) = n+ 1.

Commutative Algebra Fact. The Hilbert function is a linear function
for all values d larger than a fixed d0 ∈ Z.

Example. Suppose S ⊂ CP2 is embedded in the complex projective plane.
In this case the homogeneous ideal is I = F · C[x0, x1, x2], generated by a
single homogeneous polynomial F ∈ C[x0, x1, x2]δ of degree δ and then:

hCP2(d) = dim(C[x0, x1, x2]d) =

(
d+ 2

2

)
for d ≥ 0 and

hI(d) = dim Id = dim (C[x0, x1, x2]d−δ) =

(
d− δ + 2

2

)
for d ≥ δ

Subtracting, we get the linear function:

hS(d) = δd+

(
1− (δ − 1)(δ − 2)

2

)
for d ≥ δ
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Hypersurface Divisors. Let L = c0x0 + · · · + cnxn ∈ C[x0, ..., xn]1 be a
nonzero linear form. An effective divisor div(L) on the Riemann surface S
is defined as follows. If p = (p0 : ... : pn) ∈ S and pi 6= 0, then:

L

xi
= c0

x0
xi

+ · · ·+ cn
xn
xi

defines a nonzero meromorphic function on S, and ordp(L) := ordp(L/xi)
which is in fact independent of the choice of i (provided that pi 6= 0). Then

div(L) :=
∑
p

ordp(L) · p

(this is basically the same way that div was computed for differentials, and
we’ll eventually see that both generalize to the notion of div(s) for any
section of a holomorphic line bundle on S).

Some things to notice about ordp(L) and div(L):

(a) S ⊂ CPn intersects the hyperplane H = V (L) ⊂ CPn at p ∈ S if and
only if ordp(L) > 0 and H is tangent to S at p if and only if ordp(L) > 1.

(b) If S is transverse to the hyperplane H, with no points of tangency
(such hyperplanes can always be found), then deg(div(L)) is the number of
points in the set S ∩H.

If L and L′ are two linear forms, then:

deg(div(L))− deg(div(L′)) = deg(div(L/L′)) = 0

since L/L′ defines a meromorphic function on S. Thus, deg(div(L)) = δ is
independent of the linear form. This is the degree of the embedding of S.

The same definition of div(F ) can be made for F ∈ C[x0, ..., xn]d − Id,
or even better for the non-zero image of F in C[S]d. Namely,

(i) ordp(F ) = ordp(F/G) for any G ∈ C[x0, ..., xn]d with G(p) 6= 0.

(ii) div(F ) =
∑

p ordp(F ) · p is a divisor of degree dδ on S.

and finally, this defines an injective linear map of vector spaces:

(∗) C[S]d ↪→ V (div(G)); F 7→ F/G = φ ∈ C(S)

(for any fixed nonzero G ∈ C[S]d).

Remark. In (ii), deg(div(G)) = dδ is an instance of Bézout’s Theorem.
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We call div(G) a hypersurface divisor on S ⊂ CPn. When d is large
enough, deg(KS − div(G)) = 2g − 2 − dδ < 0, so V (KS − div(G)) = 0 and
then (∗), Proposition 6.1 (div(G) is effective) and Bézout’s Theorem give:

hd(S) ≤ dim(V (div(G))) ≤ dδ + 1− g

The Riemann-Roch Theorem for these divisors will then follow from:

Theorem 6.12. For S ⊂ CPn of degree δ and genus g,

hd(S) = dδ + 1− g

for all sufficiently large values of d.

Proof. Let H = V (L) be a hyperplane that is transverse to S, and
let H ∩ S = {p1, ..., pδ}. Then for all d ≥ 1, multiplication by L gives an
injective map of vector spaces:

C[S]d−1 → C[S]d; F 7→ F · L (mod Id)

to the subspace consisting of elements G ∈ C[S]d with the property that
G(pi) = 0 for all i. We can rewrite this as a complex of vector spaces:

C[S]d−1
·L→ C[S]d

ev→ Cδ

where ev is the evalution at the points pi (with some choice of coordinate).

Then ev is surjective for d ≥ δ−1. Indeed, there are linear forms Li that
vanish only at pi and none of the other points, and then ev(L1 · · · L̂i · · ·Lδ)
are a basis for Cδ. To get larger degree, simply multiply by any polynomial
not vanishing at any of the points. Thus for large values of d,

hd−1(S) + δ ≤ hd(S)

which immediately implies that for large values of d,

dδ + constant ≤ hd(S) ≤ dδ + 1− g

and since hd(S) is eventually a linear function in d, we have hd(S) = dδ+ k
for all sufficiently large values of d and some k ≤ 1− g.

Our aim is to prove that k = 1− g (to be continued....)
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RR Assignment 3. (i) Check the computation of hS(d) in the Example.

(ii) Convince yourself that the degree of a Riemann surface embedded
in the plane does agree with the degree of the homogeneous polynomial F
that generates its homogeneous ideal.

(iii) Suppose S ⊂ CP3 and its homogeneous ideal I is generated by
two homogeneous polynomials F and G, of degrees γ1 and γ2, respectively.
Compute the degree δ and the genus g of S in terms of γ1 and γ2.

Riemann Surfaces in the Projective Plane: An Extended Example.
Let S ⊂ CP2 be a plane curve of degree δ. We prove here that:

g =
(δ − 1)(δ − 2)

2

With the earlier computation of the Hilbert function of S, this proves the
Riemann-Roch Theorem for hypersurface divisors of large degree on S.

Let F ∈ C[x0, x1, x2]δ generate the ideal I of S and assume, changing
coordinates if necessary, that (0 : 1 : 0) 6∈ S and that the line x2 = 0 is
transverse to S, necessarily meeting S in δ points.

Proof Sketch. Projecting from p = (0 : 1 : 0) gives a holomorphic map:

π : S → CP1

(as a map from CP2 to CP1, the projection is defined at every point except
for p itself). In the open set U2 = {(x0 : x1 : x2) | x2 6= 0} = C2 with local
coordinates x = x0/x2 and y = x1/x2, π is the projection onto the x-axis.
In these coordinates, the line at infinity is x2 = 0 and maps to ∞ ∈ CP1

and does not contribute to the ramification of the map π. Then:

(i) The degree of the map π is δ.

(ii) The ramification divisor of the map π is:∑
p

(ep − 1) · p = div

(
∂F

∂x1

)
Keeping in mind that the partial derivative has degree δ − 1, we get:

2g − 2 = δ · (−2) +
∑
p

(ep − 1) = −2δ + (δ − 1) · δ

from the Riemann-Hurwitz and Bézout Theorems, giving the genus formula.
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Let’s go into each of these in greater detail.

(o) Projection from p = (0 : 1 : 0) becomes projection to the x-axis in U2.

The lines through p all have equations: ax0 + cx2 = 0 which, with the
exception of the line x2 = 0, all have the form:

x0
x2

= x = − c
a

in the local coordinates (x, y). Thus, the fibers of the projection are vertical.

(i) The degree of the map π is δ.

The degree of π is the number of points of the intersection of S with any
line through p that intersects S transversely. This number is δ.

(ii) At each point q = (x0, y0) ∈ S, we have

eq − 1 = ordq

(
∂f

∂y

)
= ordq

(
∂F

∂x1

)
where f(x, y) = F (x0, x1, x2)/x

δ
2 is the polynomial cutting out S in the open

set U2 = C2. The second equality follows immediately from the chain rule.
The first equality is the crux of the matter.

We can assume q = (0, 0) ∈ S by translating the x and y variables
without affecting either side of the equation, and then:

f(x, y) = ax+ by + higher order, with ab 6= 0

and ax+ by = 0 is the tangent line to S at q.

Suppose first that b 6= 0. Then x = 0 is not tangent to S, so eq = 1.
On the other hand, (∂f/∂y)(q) = b 6= 0, and so ordq(∂f/∂y) = 0 = eq − 1.
Check. Now suppose b = 0 (so a 6= 0). We collect all terms divisible by x
and then factor out the largest power of y in the remaining terms to get:

f(x, y) = xg(x, y) + yeh(x, y) for some 1 < e ≤ δ

with g(q) 6= 0 and h(q) 6= 0. Then on S ∩ U2 (where f ≡ 0), we have:

−xg(x, y) = yeh(x, y), so ordq(x) + ordq(g) = e · ordq(y) + ordq(h)

But as functions on S, ordq(g) = 0 = ordq(h) and ordq(y) = 1, since
y = 0 is not the tangent line. Thus e = ordq(x) = eq.
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On the other hand, taking the derivative, we have:

∂f

∂y
= x

∂g

∂y
+ ye

∂h

∂y
+ eye−1h

and the first and second terms both have order ≥ e at q. It follows that:

ordq

(
∂f

∂y

)
= ordq(ey

e−1h) = e− 1

RR Assignment 4. (1) Finish the proof by explaining why ∂F
∂x1

(q) 6= 0 for
all points q in the intersection of S with the line x2 = 0, recalling that this
line was assumed to intersect S transversally, so eq = 1 for all these points.

(2) Celebrate that we now have Riemann surfaces of genus 3, 6, 10 etc.
as non-singular plane curves of degrees 4, 5, 6 etc. in CP2.

Remark. Earlier, we saw that we can find all hyperelliptic Riemann surfaces
of every genus g ≥ 2 embedded in CP1 × CP1, a “compactification” of C2.
In the projective plane CP2, which is another compactification of C2, there
are only embedded Riemann surfaces of genus 0, 1, 3, 6, 10 etc.

Back to the Proof of Theorem 6.12. Assume S ⊂ CPn for n ≥ 3.

The Big Idea. Project from a point p 6∈ S.

(i) If n ≥ 4, then p ∈ CPn − S can be chosen so that the projection:

π : S → CPn−1

remains an embedding (of the same degree δ)

(ii) If n = 3, then p ∈ CPn − S can be chosen so that the projection:

π : S → CP2

is an immersion and an embedding away from m pairs of points pi, qi ∈ S
that map to distinct points νi = π(pi) = π(qi) so that the tangent lines to
S at pi and qi map to distinct lines in CP2 meeting at νi.

Remark. This is achieved with a dimension count. The union of the
secant and tangent lines to S ⊂ CPn are the loci of points p ∈ CPn from
which projection is not injective (resp not an immersion). The former has
dimension ≤ 3 and the latter has dimension ≤ 2. This explains (i), and (ii)
is only slightly more delicate.
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After projecting (in stages) to CP2, S maps to a singular curve:

X ⊂ CP2 cut out by F ∈ C[x0, x1, x2]δ

In local coordinates, each of the m points νi ∈ X is a simple node. Then:

(i) As before, we have the following computation for all d ≥ δ:

hX(d) = dδ + 1− g(X) where

g(X) =
(δ − 1)(δ − 2)

2
is (by definition) the “arithmetic” genus of X ⊂ CP2

(ii) By a local computation as before, we project from a point in CP2

and use the Riemann-Hurwitz and Bézout Theorems to obtain:

g(S) = g(X)−m where g(S) is the (ordinary) genus of S

(iii) When d is sufficiently large,

hS(d) ≥ hX(d) +m = dδ + 1− g(S)

which completes the proof of Theorem 6.12.

Proof of the Riemann-Roch Theorem. The hypersurface divisors of
sufficiently large degree dominate any given divisor, so Corollary 6.9 applies.
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