Riemann Surfaces and Graphs
3. Linear Series
We begin with the definition of complex projective space.
Definition 3.1. CP" is the manifold of complex lines through 0 € C**+1.

A point x € CP™ may be labelled with the coordinates of any non-zero
point on the line represented by z, modulo the equivalence:

(ot tp) ~ (Axo t oo 1 Azyy) for any A # 0

In other words, we think of the coordinate as a ratio. We realize CP™ as an
n-dimensional complex manifold via the topology in which:

U={(xo:.izit o iap) | @ #0} =C"

are open sets, equipped with local coordinates: zp = xy/x; for each k # i.
If wy, = x/xj,k # j are local coordinates for U; = C”, then:

w
zk:—kforkaéi,jandzi:—
i w;
are the transitions expressing the z; as holomorphic functions of the wy.
Exercise. Check that this agrees with the earlier definition of CP'.

Suppose now that S is a Riemann surface and Q[S] is the g-dimensional
vector space of holomorphic differentials on S. For convenience we will
choose a basis: wy = o(2)dz, ...,wg—1 = VYy_1(2)dz € Q[5].

Lemma 3.2. The map:

U:S—CPY U(p) = (Yolp) : - 1hg-1(p))

is well-defined as written at all points p € S for which there is a holomorphic
differential w = 1(z)dz with ¥ (p) # 0.

Proof. The meromorphic functions 1);(z) transform according to:

Vi(2)dz = i (h(w))h (w)dw

when z is replaced by the local coordinate w with z = h(w). It follows that
all the values v;(p) are multiplied by the same scalar A = h/(p) when trans-
ferring from one coordinate to the other. Thus ® is well-defined, provided
that 1¥;(p) # 0, which, since the 1;(z)dz are a basis, is the same as saying
that 1 (p) # 0 for some holomorphic differential w = 1)(z)dz.



It is useful to think about the map ¥ without the choice of basis in mind.
In particular, ¥ should be thought of as a map to the projective space of
hyperplanes in Q[S] via:

U(p) = {w € Q[S] [ w(p) = 0}

which is the space of lines through the origin in the dual vector space Q[S]".
The coordinates of the map are the coefficients of the hyperplane:

U(p) ={w= inwi € Q[S] | wo(p)zo+ -+ + wg—1(p)xg—1 = 0}

(well-defined up to one scalar multiple). From this point of view, we see
again that U is well-defined at p precisely when ¥(p) not all of Q[5], i.e.
when w(p) # 0 for some w € Q[5].

Lemma 3.3. Assume V¥ is well-defined. Then it is injective if and only if:
U(p) NW(g) = {w € QST [ w(p) =0 =w(q)}
is a codimension two subspace of 2[S] for all p # g € S.

Proof. ¥(p) # ¥(q) if and only if U(p) N ¥(q) # V(p).

In other words,
() The images of p and ¢ are distinct under W if and only if there is a
differential w with the property that w(p) = 0 but w(q) # 0.

There is a similar criterion for the non-vanishing of the derivative of W.
Namely, suppose ¥(p) € U; and consider the equivalent map:

U (2) = (¢0(2), -y @g—1(2)) € U; where ¢y = 9y /1h;

in a local coordinate z at p. Then:
W'(2) = (¢0(2), -+ $g—1(2)) = (0,..0) & Y (2)hi(2) = Y (2)¥i(2)

if and only if (¢o(2) : -+ 1 9Pg-1(2)) = (Yp(2) : -+ 2 Py _1(2)). Le.
(%) W is an immersion at p if and only if there is a differential w with
w(p) = 0 and the order of vanishing of w at p is one.

We will see with the help of the Riemann-Roch Theorem that if S is any
Riemann surface, then either:

(a) S has a meromorphic function with two simple poles, or else:

(b) The map ¥ described above is an embedding of S in CP9~1.



This has the effect of “algebraizing” the Riemann surface because of:

Chow’s Lemma. If M is a compact complex manifold and ® : M — CP"
is an embedding, then M is cut out by homogeneous polynomials.

Before we explain this, consider a generalization of the discussion above.
Let 1, ¢1,...., ¢n, be linearly independent meromorphic functions on S. Then

O(p) = (1:p1(p) : -+ : du(p)) € CP"

is a well-defined map from S — {poles of the ¢;} to Uy C CP". This map
extends to a holomorphic map from S to CP" as follows. If ¢ € S is a pole
of some ¢, let ¢; be the meromorphic function for which the pole at ¢ has
maximal (negative) order. Then:

D(z) = ((1/¢) (2) : -+ = (Pn/ i) (2) : )
has the same image as ® near ¢ and extends the map holomorphically across
g to an image point in U; — Uy. This can evidently be done for all g € S.

Again, if we let V = (1,¢1, ..., ¢,) then we can think of the map in a
basis-free manner by setting ®(p) = {¢ € V| ord,(¢) > min; ord,(¢;)} and
then the analogues of (%) and (xx) in this setting are:

(x) ®(p) # ®(q) if and only if there is a meromorphic function ¢ € V
such that ord,(¢) > min; ord,(¢;) but ord,(¢) = min; ord,(¢;).

(#x) @ is an immersion at p if and only if there is a meromorphic function
¢ € V such that ord,(¢) = min; ord,(¢;) + 1.

Exercise. Extend the map from §2:
d=(1:P:P):C/A — CP?

and prove that it is an embedding.

Equations. A homogeneous polynomial of degree d;

F(xgy...,xn) = Z crz!s with ey eC, 2l = l'go . --x‘fl” for I = (dy, ..., dy)

=
is not a function on CP" since F(Axo, ...., \x,) = A F(z, ..., ), but
V(F)={(xo:....: z,) € CP" | F(xo,....,2) = 0} C CP"

cuts out a well-defined hypersurface in CP™.



Example. (a) Linear equations Z?:o a;x; = 0 cut out vector subspaces
V C €™ and linear projective subspaces of lines through the origin in V.

(b) If f(z1,....,2n) € Clz1,..., 2n] is a polynomial of degree d, then the
affine hypersurface {z = (z1,...,2zn) | f(2) = 0} C C™ may be completed by
setting C" = Uy C CP" and letting F(zg, ..., zy) = ng(xl/xo, vy T/ T0).
Then V(F) = V(f) U (V(F)NV(xp)) completes V(f) with the additional
points of the projective hypersurface V(F(0,z1,...,z,)) C V(z¢) = CP* 1,

In two variables, the hypersurface V(f) C C? is a plane curve, which
is completed with a finite set of points in the projective line at infinity
CP? — Uy. For example, let rq,...,rq € C for d > 2, and consider:

flz1,2) =25 — (1= 71) -+ (21 — 7q)

Then F(zg, 21, 22) = zg_2z% — (21 —1r120) -+ - (21 — rqz0) and

[ {(0:0:1)} when d > 2
V(F)ﬂV(zo)—{ 01519, (0:1:—1)} when d =2

Lemma 3.4. Given F, if the locus of zeroes in CP" of the gradient:
V(F) = (0F /0xq,...,0F/0x,)

is empty, then V(F') is a complex submanifold of CP" of dimension n — 1.
Note. The locus of zeroes of VI is an intersection of hypersurfaces:

V (OF /0xo)N--- NV (OF /0xy,)

which is expected to be empty because these are n + 1 equation conditions.

Proof. On each open set U; with coordinates zj = zy/x;,

Bl@yos@n) g OF _ OF ) aet oy g 2

F oz =1, .. = B
(ZO, ,xz/xz 5 7Zn) I‘;j 8Zk 855/6

Thus if p € V(F) N U; and some partial derivative OF /0x(p) # 0 for k # 1,
then 0F/0z,(p) # 0 and by the implicit function theorem, V(F)NU; is a
complex submanifold of U; = C" in a neighborhood of p. On the other hand,
if p e U; and 0F /0zi(p) = 0 for all k # ¢, then from Euler’s identity:

it follows that p € V(F) N U; if and only if OF /0x;(p) = 0. O



Example. The (ordinary) gradient of the affine hyperelliptic plane curve:

f(z1,292) = z% —(z1—=11) (21 —71q) 18

DY) | CRE

1 j#i

which is therefore only zero at the point (r;,0) for a root r; with multiplicity
two or more. Thus if all roots are distinct, then V(f) is a Riemann surface.
On the other hand, if d > 2 consider the point (0:0:1) € V(F)NUs,. Then:

VF=|(d-2) d32+ZnHw1—r]w0 ZHml—T]xo 2:130 To

i J# N
is non-zero at (0:0: 1) if and only if d = 3.
Exercise. Analyze the case d = 2.

Definition 3.5. A hypersurface V(F) C CP? with non-vanishing gradient
is a smooth plane curve. By Lemma 3.4, it is a closed Riemann surface.

Question. What is the genus of a smooth plane curve of degree d?
We will also have occasion to use plane curves that are not smooth.

Suppose 0 € V(f) and V(f)(0) = 0. Then the expansion of f:

f(z1,22) = fo+ i+ fot+ fa+-+ fa

in homogeneous summands satisfies fo = f1 = 0. Factoring:

e
fe(z1,29) = H(aizl — b;z2) for the first nonzero f.
i=1

determines e lines in C? through 0 that make up the tangent cone to f at 0.
When e = 2 is the first non-zero homogeneous summand, then:
(a) V(f) has a simple node at 0 if the tangent cone is two distinct lines.
(b) V(f) has an ordinary cusp at 0 if fy is a square.

Exercise. (i) What is the tangent cone of the point at infinity in the affine
hyperelliptic curve example above when d > 47

(ii) Find examples of homogeneous polynomials F'(xg,x1,x2) in every
degree with the property that V(F') is a smooth projective plane curve.



Lemma 3.4 generalizes to intersections of hypersurfaces. For example:

Lemma 3.6. If Fi,...., F,,_,, are homogeneous polynomials in the xq, ..., x,
(of various degrees) and if p € V(Fy)N---NV(F,_p,) and the Jacobian:

det (gi) (p) has rank n —m

then in a neighborhood of p € CP", the intersection V(Fy) N--- NV (F,—1)
cuts out a complex submanifold of dimension m.

Remark. Chow’s Lemma asserts that if ® : M — CP" is an embedding of
a compact complex manifold of dimension m, then for each p € M, there
are homogeneous polynomials Fi,...., F,_,, as in the Lemma above that
(necessarily) cut out the image of M in a neighborhood of p. However, as
the following example shows, there need not be homogeneous polynomials
that cut out the image of M for all points p € M at once.

Ezample. Consider the three quadratic polynomials:
Q1 = zox2 — 77, Q2 = 2073 — 2172 and Q3 = w123 — T3
that collectively cut out the embedded twisted cubic curve:
D:CP' - CCCP}d(2)=(1:2:2%:2%) = (wP:w?:w:1)

Note that the quadratic polynomial ()9 itself cuts out a submanifold of
dimension two, since VQy = (x3, —x2, —x1,x0) is never zero but 1 and Q2
are singular at (0:0:0:1) and (1:0:0:0), respectively. In fact, the map:

CP! xCP' — V(Q2) € CP?%; ((ap : a1), (bo : b1)) + (agbo : a1bg : agby : aiby)

is an isomorphism of complex surfaces, mapping each CP! x {(bg : b1)} and
{(agp : a1)} x CP! to a pair of intersecting lines in CP3. If Q, Q' are linearly
independent in the vector space (Q1,Q2,Q@3), then V(Q) N V(Q') = C U1,
where [ is a line intersecting C' in two points. But [ depends on the choice
of Q,Q’, and altogether V(Q1) NV (Q2) NV (Q3) cut out the twisted cubic.

Question. A pair of non-constant meromorphic functions ¢, on S give
P := (¢, ) : S — CP' x CP' = V(Q2)

When do ¢ and ¢ determine an injective map? An immersion? If ¢, have
degrees d, e and ® is an embedding, what is the genus of S7



Definition 3.7. A pair of divisors D, D’ € Z[S], are linearly equivalent
(written D ~ D') if D 4 div(¢) = D’ for some (non-zero) ¢ € C(S5).

Lemma 3.8. Linear equivalence is an equivalence relation.

Proof. (a) D+ div(1) = D, so the relation is reflexive.
(b) If D+div(¢) = D', then D'+div(1/¢) = D, so the relation is symmetric.
(¢) If D +div(¢) = D" and D' + div(¢)) = D", then D + div(¢yp) = D" so

the relation is transitive.

Definition 3.9. For any divisor D of degree d, let:
|D| ={D' | D~ D" and D' is effective} C Sy

Lemma 3.10. |D| =0 or else |D| = CP" for some r > 0.

Proof. We may assume that D is effective. Let:

D:depESd

Then D + div(¢) = D’ is an effective divisor if and only if ord,(¢) > d,
for all p € S, but if ord,(¢) > m and ordy,(¢)) > m then ord,(¢ + ) > m,
so the set of such meromorphic functions ¢ (together with zero) is a vector
space V of dimension < d + 1. Finally, a divisor D’ € |D| determines the
meromorphic function ¢ with div(¢) = D’ — D up to a scalar multiple, so
|D| is the projective space of lines through the origin in V.

Corollary 3.11. r = r(D) agrees with Definition 1.9 (adapted from graphs).

Proof. Given E =) epp € Se, let V(—FE) C V be the vector subspace
of meromorphic functions with the property that ord,(¢) > d, — e,. Then:

(i) The projective space of lines through 0 € V(—FE) is:
|D — E|={D' € |D| | D' = E + effective} and

(ii) dim(V(—E)) >r+1—eforall E and =7+ 1 — e for some E. [

Definition 3.12. A point p € S is a base point of |D| if (D — p) = r(D).
The linear series |D| is base point free if it has no base points.

In other words, |D| is base point free if dim(V(—p)) =r for all p € S.

Proposition 3.13. If the linear series |D| is base point free, then:

&p: S — CP"; &p(p) =V(-p)



defines a map to the projective space of hyperplanes in V' that:
(*) Separates p and ¢ if (D —p —¢q)) =7 — 2 and
(*%) Is an immersion at p if (D — 2p) =r — 2.

Example. Let S = CP! and D be any divisor of degree d > 0. Then |D| is
base-point free, and if d > 1, then ®p is an embedding.



