
Closed Riemann Surfaces and Metric Graphs
0. Introduction.

A Riemann surface S is a one-dimensional complex manifold, i.e. S is a
(Hausdorff second countable topological) space with a holomorphic system of
one-complex variable local coordinates. Holomorphic means that a function
f : U → C defined on an open subset of S is holomorphic as a function
of one local coordinate if and only if it is holomorphic as a function of the
others. Equivalently, if z and w are local coordinates then z = h(w) is
holomorphic as a function of w whenever both are defined. The topology of
a closed (compact) Riemann surface is either the sphere or a g-holed torus.

There is a single system of holomorphic local coordinates on a sphere,
but there are moduli (families) of Riemann surfaces with the topology of
each g-holed torus. When g = 1, these are the elliptic curves, whose moduli
have one complex dimension; they may be seen as points of a fundamental
domain in the upper half plane. When g > 1, the moduli of Riemann
surfaces has 3g − 3 complex dimensions.

By the maximum principle, the only holomorphic functions on a closed
Riemann surface S are the constants, but the meromorphic functions on S
determine the Riemann surface S in a precise, algebraic manner. This ties
the study of Riemann surfaces to algebra, number theory and group theory.
A meromorphic function is a “partially defined” function:

φ : S −− > C

that is well-defined and holomorphic away from finitely many points of S, at
which φ has poles as isolated singularities. It is a very reasonable question,
answered remarkably precisely by the Riemann-Roch theorem, whether a
given Riemann surface has any non-constant meromorphic functions!

Lemma 0.1. If φ is a meromorphic function on a closed Riemann surface S,
the total number of zeroes (with multiplicity) is equal to the total number
of poles (with multiplicity).

Proof. The residue of the meromorphic differential

1

2πi

dφ

φ

at each point of S records the multiplicity of zero at the point (positively)
and the multiplicity of pole (negatively) and the residues sum to zero when
the Riemann surface is closed.
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A general meromorphic differential ω is an object of the form ω = ψ(z)dz
in each local coordinate z. But unlike meromorphic functions, a differential
“transforms” into a nearby local coordinate by the rule:

ψ(z)dz = ψ(h(w))h′(w)dw

designed so that if φ(z) is a (meromorphic) function, then:

dφ =: φ′(z)dz = φ′(h(w))h′(w)dw = φ′(w)dw

defines a meromorphic differential, by the chain rule.

Even though the coefficients ψ(z) of the meromorphic differential ω do
not determine a well-defined function on S, the multiplicities of their zeroes
and poles are well-defined since h′(w) 6= 0 by virtue of the fact that h has a
holomorphic inverse. On the other hand, if ω1 = ψ1(z)dz and ω2 = ψ2(z)dz
are meromorphic differentials, then the ratio of their coefficients:

φ(z) = ψ1(z)/ψ2(z) = ψ(1h(w))/ψ2(h(w)) = φ(h(w))

does patch to a meromorphic function. Conversely, if φ is a meromorphic
function, then φω is a meromorphic differential.

Example. The Riemann Sphere is the topological space CP1 := C∪{∞}
(the one-point compactification of C = R2) covered by U = CP1−{∞} with
local coordinate z and V = CP1−{0} with local coordinate w and z = h(w)
for h(w) = 1/w on C− {0} ⊂ C. Thus, for example,

z − 2 =
1

w
− 2 =

1− 2w

w

in each of the coordinates, giving a meromorphic function with a zero at
z = 2 (equivalently at w = 1

2) and a pole at w = 0 (the point at infinity).
The meromorphic differential:

ω = dz = − 1

w2
dw

has a pole of order 2 at w = 0 and no zeroes. The differential:

1

2πi

dz

z
= − 1

2πi

dw

w

as in Lemma 0.1 has poles at z = 0 and w = 0 whose residues (1 and −1)
reflect the fact that z has a simple zero at z = 0 and a simple pole at w = 0.
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Let S be a closed Riemann Surface of genus g. Then the holomorphic
differentials (meromorphic differentials with no poles) are a vector space of
dimension g. This is in contrast with holomorphic functions on S, which are
always a vector space of dimension 1 (the constants). In the example of the
sphere above, non-zero meromorphic differentials always have at least two
poles, and so zero is the only holomorphic differential.

For a set X, let:

Xd = X × · · · ×X = {(x1, ..., xd) | xi ∈ X}

be the set of d-tuples of points X, and let: Xd = {x1 + · · · + xd |xi ∈ X}
be the set of unordered d-tuples of points of X. This can be thought of as a
subset of the free abelian group on the points of X:

Xd ⊂ Z[X] =

{
n∑

i=1

mixi | mi ∈ Z

}

There is a degree map

deg : Z[X]→ Z; deg

(
n∑

i=1

mixi

)
=

n∑
i=1

mi

and we will let Z[X]0 = ker(deg).

When X = S is a Riemann surface, we call elements of Z[S] divisors,
and elements of Sd are effective divisors of degree d. While the object
Z[S] is very large and formal, the parameter spaces Sd for effective divisors
of degree d are complex manifolds of dimension d (see §5).

Definition 0.2. The divisor div(φ) of a meromorphic function φ on S is:

div(φ) =
∑
p∈S

ordp(φ)p ∈ Z[S]0

where ordp(φ) is the order of vanishing of φ at p ∈ S, which is non-zero only
at finitely many points of S.

Note that the meromorphic functions on S are a field, denoted C(S)
and the div function is a group homomorphism:

div : C(S)∗ → Z[S]0

converting multiplication (of functions) to addition (of divisors).
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Similarly, each meromorphic differential has an associated divisor:

div(ω) =
∑
p∈S

ordp(ψ) · p ∈ Z[S]

with a well-defined degree (independent of ω). We will see that this degree
is 2g − 2.

Soundbite. Meromorphic functions on S satisfy polynomial relations.

We will explore this in detail, and see analogous behavior in graphs.

A (finite, combinatorial) graph Γ consists of the following data:

V a finite set of vertices of Γ

E a finite set of edges of Γ

ε : E → V2, the ends of each edge

which has a very coarse topology in which the closed sets are finite sets of
vertices as well as finite sets of edges with all their ends. Note that in this
topology, an individual edge e ∈ E is an open set and that the smallest open
neighborhood of a vertex v ∈ Γ is the vertex v together with all “adjacent”
edges e for which v is an end of e (the “star” of v).

Definition 0.3. The valence val(v) of v ∈ V is given by the equality:∑
e

ε(e) =
∑
v

val(v) · v ∈ Z[V ]

i.e. val(v) is the number of times v is an end of an edge adjacent to v.

Definition 0.4. A path in a graph Γ is a series of vertices and edges:

{v1, e1, v2, e2, ..., en, vn+1}

with the property that ε(ei) = vi + vi+1. A path of the form vev is a loop.
In general, a circuit is a path with v1 = vn+1 and no other repeated vertices.

Definition 0.5. The genus of a connected graph Γ is given by:

|V | − |E| = 1− g (Euler’s Formula)

Lemma 0.6. g(Γ) = 0 if and only if Γ has no (non-trivial) circuits.

Proof. Suppose Λ = {v1, e1, ..., env1} is a circuit in a graph Γ.
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This is a genus one subgraph of Γ. The graph Γ is built by adding
edges to Λ, with each added edge coming with one or zero new vertices
(depending on whether the other end of the edge attaches to the subgraph).
Thus the genus only increases as edges are added. So graphs with circuits
have positive genus. On the other hand, suppose Γ is circuit-free and let
v ∈ V (Γ). Then either Γ is a singleton vertex (which has genus zero), or else
Γ has an edge e adjacent to v. This edge is not a loop, so contracting the
path vew gives a new graph Γ′ with vew replaced by a single vertex v which
is also circuit free and of the same genus as Γ. Repeating such contractions
eventually contract all the edges of Γ to the singleton v, so g(Γ) = 0.

Graphs with no circuits are called trees.

Remark. If we contract non-loops adjacent to v as in the proof above on a
graph of genus g until v is only adjacent to loops, the result is a bouquet
of g loops with the single vertex v, and the subgraph of Γ that is contracted
is a spanning tree of Γ, i.e. a connected tree inside Γ that has the same
vertex set as Γ.

Chip Firing from v is a zero-sum game (later adapted to metric graphs)
in which a divisor D =

∑
v dv · v ∈ Z[V ] is transformed by reducing dv by

the valence of v and increasing dw by one for all the neighbors of v. Given
a divisor of positive degree but with some vertices “in debt” (with dv < 0),
the game is to transform D into an effective divisor E ∈ Vd by firing from a
sequence of vertices. Playing this game is analogous on a Riemann surface
to adding div(φ) to a divisor D of degree d, to try to similarly create an
effective divisor. In both contexts, one has:

Jacobi Inversion. The game is winnable for all divisors D of degree ≥ g.

This is the first of many remarkable coincidences between graphs and
Riemann surfaces that we will explore in these notes.
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