
What about the Riemann-Roch Theorem in general? For example, given
an effective divisor D of positive degree on a Riemann surface, we have:

dim(V (KS +D)) ≤ g + deg(D)− 1

by the Riemann-Roch inequality, but Corollary 6.2 does not apply since
−D = KS − (KS +D) is not linearly equivalent to an effective divisor.

This particular example is quite important, since equality gives exactness
of an analogue of the exact sequence in Proposition 6.1(c) for meromorphic
differentials (as opposed to a meromorphic functions):

0→W (0) = Ω[S]→W (D)→ Laur(D)→ C→ 0

which, in terms of local coordinates zi around the points pi appearing in
D, maps a meromorphic differential to its Laurent tail and maps a Laurent
tail to its “residue,” namely the sum of the coefficients ai,−1 of each z−1i .
Riemann-Roch in this context is used in the proof of Abel’s Theorem.

We will prove the Riemann-Roch Theorem with a more sophisticated
version of Corollary 6.2 by considering Riemann surfaces “in the wild,” i.e.
embedded in projective space. Note that by Proposition 6.6., every Riemann
surface of genus g ≥ 2 that is not hyperelliptic embeds in CPg−1. Before we
proceed let’s tackle the hyperelliptic Riemann surfaces.

Hyperelliptic Riemann Surfaces in CP1×CP1. We can almost describe
a hyperelliptic Riemann surface as a complex curve in C2 via an equation:

C = {(x, y) ∈ C2 | y2α(x) + yβ(x) + γ(x) = 0}

of degree two in the y variable and degree d = max(deg(α, β, γ)) in x. We
will assume that α, β and γ all have degree d with no multiple roots and no
shared roots. Each fiber π−1(x0) of the projection π : C → C to the x-axis
is the set of zeroes of the polynomial:

f(x0, y) = y2α(x0) + yβ(x0) + γ(x0) which is:

(i) Two distinct points if α(x0) 6= 0 and ∆(x0) 6= 0, where

∆(x) = β(x)2 − 4α(x)γ(x)

is the discrminant, which we’ll assume to also be of maximal degree 2d.

(ii) One (ramified) point if ∆(x0) = 0 but α(x0) 6= 0

(iii) One non-ramified point if α(x0) = 0 but ∆(x0) = β(x0)
2 6= 0.
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The condition for C to be a complex manifold is:

f(x, y) 6= 0 or
∂f

∂x
(x, y) 6= 0 or

∂f

∂y
(x, y) 6= 0

for all points (x, y) ∈ C2. But f(x0, y0) = 0 = (∂f/∂y)(x0, y0) if and only if:

∆(x0) = 0 and y0 = − β(x0)

2α(x0)

and the additional condition (∂f/∂x)(x0, y0) = 0 is equivalent to ∆′(x0) = 0.

Thus for f(x, y) to define a Riemann surface, one only needs to be sure
that the discriminant polynomial ∆(x) has no multiple roots. Next, we
introduce a z variable to “homogenize the y variable” in f(x, y) giving:

y2α(x) + yzβ(x) + z2γ(x)

the zeroes of which, in C × CP1 add d points to C, namely the “missing”
points of the projection map over the roots of α(x). Finally, we introduce a
w-variable to homogenize the x variable, replacing:

α(x) by A(x,w) = wd · α(x/w), etc

or equivalently, if α(x) = a(x− r1) · · · (x− rd), then

A(x,w) = a(x− r1w) · · · (x− rdw)

This further enlarges C, adding two more points and completing it to a
closed Riemann surface S embedded in CP1 × CP1. Notice that:

π∗(x) = φ is the meromorphic function on S with two poles

defining S as a hyperelliptic Riemann surface, and:

ρ∗(y) = ψ is another meromorphic function on S with d poles

where ρ is the “other” projection to the y-axis (extended to CP1).

Proposition 6.7. The genus of S is d− 1.

Proof. By the Riemann-Hurwitz formula, since π : S → CP1 ramifies
only over the 2d zeroes of the discriminant ∆(x), we get:

2g − 2 = 2(−2) +
∑

(ep − 1) = −4 + 2d and g = d− 1
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In particular, the “extra” meromorphic function ρ∗(y) has g + 1 poles.

Proposition 6.8. Every hyperelliptic S is isomorphic to one of these.

Proof. If S, S′ are hyperelliptic Riemann surfaces of genus g with maps:

φ : S → CP1 and ψ : S′ → CP1

of degree two, ramified over the same set of points x1, ..., x2g+2 ∈ CP1, then
S ∼= S′. Thus, to prove that our construction gives all hyperelliptic curves,
we need to simply find, given distinct complex numbers x1, ...., x2g+2 ∈ C,
three polynomials α(x), β(x) and γ(x) each of degree d = g + 1 such that:

∆(x) = β(x)2 − 4α(x)γ(x) = c(x− x1) · · · (x− x2g+2)

This is left to the reader as an exercise.

A Final Remark. By composing with the further embedding:

S ⊂ CP1 × CP1 → CP3

of CP1 × CP1 in CP3 as a quadric surface, we see that every hyperelliptic
curve embeds in CP3. Indeed, every Riemann surface embeds in CP3.

Assignment. 1. Read and complain if you don’t understand something.

2. Find a graphing calculator (e.g. desmos.com) and play with equations:

y2α(x) + yβ(x) + γ(x) = 0 of your choosing

The curves you get can be quite intricate. Share your most inspired creations
with me, and I’ll forward them to the class.

For example, explain the features of the curve:

y2(x2 − 1) + y(x2 − 6) + (x2 − 9) = 0

(Keep in mind that we can’t see all the features of the complex solutions in
this set of real solutions.)

3. Tackle the Exercise in the final Proposition.
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