Riemann Surfaces and Graphs
1. Chip Firing on Graphs

Let I" be a connected graph with no loops.

Firing 1.0. Firing from a vertex v; € V' converts a divisor Dy = ) d,v to:

Dy = (dy, —val(v1))v1 + Z (dw + Dw + Z dyv
neighbors of vy other vertices

i.e. thinking of d, as the number of dollars owned (or owed) by v, firing sends
one dollar from v; to each neighboring vertex. Then deg(Dy) = deg(D1),
i.e. the total number of dollars owned (or owed) is unchanged by firing.

Definition 1.1. Divisors D, D’ (of the same degree) are chip-related if there
is a sequence of chip firings from vertices vy, vo, ...., v, € V giving:

D=Dg~ Dy~ - %D, =D
Example. Let I' be the triangle with adjacent vertices abc. Then

2a~a»>b+c~9+a—b+2c~/c~>2a

Lemma 1.2. Being chip-related is an equivalence relation (denoted by ~).

Proof. If S C V, then firing once from all vertices of S (in any order)
has the net effect of passing one dollar across each edge joining S to S¢. In
particular, firing once from all the vertices of V' (as in the example above)
returns each divisor to itself, so the chip-relation is reflexive. This also
shows that chip-firing from v has an inverse, namely firing once from each
vertex in V' —{v}, and it follows that the chip-relation is symmetric. Finally,
transitivity is immediate from the definition.

Let D € Z[V] be a divisor of degree d (not necessarily effective).

Definition 1.3. |D| C Vj is the set of effective divisors in the equivalence
class of D. In particular, |D| = () if D is not chip-related to any effective
divisors (e.g. in the case d < 0).

The Game. Given a divisor D of degree > 0, try to create an effective
divisor by chip-firing. Then find the entire equivalence class |D| and use
this information to distinguish graphs. In the context of Riemann Surfaces,
the analogues of |D| are the (complete) linear series. We will see that these
equivalence classes are also “linear” by making use of the tropical numbers.



Example. Let I' = {a,b,c,d, e, f} be the (adjacent) vertices of a hexagon.
Then |2a| = {2a,b+ f,c+ e,2d} = |2al, but the equivalence b+ f ~ c+e
requires the firing of the three vertices a, b and f!

Proposition 1.4. If e € E is a bridge, i.e. removing e disconnects I', then
the ends p and ¢ of the edge e satisfy p ~ q.

Proof. Let p € S and ¢ € 5S¢ be the vertices of the two connected
components of I' — {e}. Then firing from all the vertices of S sends exactly
one dollar across the vertex e from p to gq. O

Corollary 1.5. (a) If g(I') = 0, then all vertices are equivalent as divisors.
(b) If g(T") = 0, then all divisors of any degree are equivalent.
Proof. Each edge of a tree is a bridge. This gives (a). For (b), we use
the fact that if Dg s Dy, then Dy + E ~ Dy + E for any divisor F, hence:
D~D =D+E~D+E

for any divisor E, and then (b) follows immediately from (a).

Next, we prove a converse to Proposition 1.4 using the following:
Lemma 1.6. If D, D’ € Vj and D ~ D’, then there is a chain of subsets
S1C S C--- C S, CV such that firing from the vertices of .S;:

D=Dy 3Dy B Dy oDy =D

gives a sequence of equivalent effective divisors D; € V.
Proof. Let the equivalence D ~ D’ be given by chip-firings of vertices:

v1, ..., U, and sum the vertices to create an effective divisor:

C’1:v1+---+vn:chv
veV

(note that chip-firing commutes!). Now let ¢ = max {¢,} and let:
Si={v|c,=¢c}

Nextlet Cy = C1—) ¢ s, U, define Sy analogously, and proceed by induction.
This produces an increasing chain of subsets of V' that accounts for the all
the chip firings of the equivalence relation. Thus we do get a sequence of
chip firings and equivalent divisors as above.



If D;_ is effective but some vertex v has a negative coeflicient in D;,
then necessarily v € S;, because the vertices of S; are the “givers” of dollars.
But then v is a “giver” vertex in all subsequent firings, since the sets are
nested, so v never has an opportunity to “take” a dollar and return to a
positive coefficient. Since the final divisor D’ is assumed to be effective, it
follows that there is no such vertex v. O

Proposition 1.7. If p ~ ¢, then there is a path of bridges from p to gq.
Proof. Let p = pg 2 D1 B pn = q be the sequence of chip firings
from the Proposition. (An effective divisor of degree one is a vertex!) Then

out of each set S; there must be a single edge joining S; to SY, passing from
pi—1 to p;. That is, the edge with €(e) = p;—1 + p; must be a bridge. O

Corollary 1.8. (a) The (distinct) vertices of a circuit are not equivalent.

(b) The vertex set of the “debridgification” graph I'gep, obtained from I"
by collapsing all the bridges is in a natural bijection with the equivalence
classes |p| of the vertices of I'. Notice that g(Tgep) = g(T'), since collapsing
each bridge reduces both the vertex set and the edge set by one element.

A leaf is a bridge from a singleton (valence one) vertex to the rest of I'.
The “deleafification” I'y; is a partial debridgification obtained by collapsing
only leaves, resulting in a graph whose vertices all have valence 2 or more.

Examples. (i) If g(T') = 0, then I'ge; = [gep is a singleton vertex.

(ii) If g(I") = 1, then I'y4.; has only vertices of valence two, and it follows
that T'ge; = [gep is a polygon P,, with n vertices and n edges.

(iii) Joining a polygon P, with a polygon P, via a bridge from one vertex
of P, to a vertex of P, gives a genus two graph with a bridge and no leaves.

Next, we define the rank r(D) of a divisor D.

Definition 1.9. (D) = —1if |D| = (). Otherwise, (D) > 0 is the maximal
integer so that for all E € V., there is an F' € V;_, with E+ F € |D|.

Examples. (a) If D is a divisor of degree d on a tree, then |D| = V; is the
set of all effective divisors of degree d, so r(D) =d

(b) Let I' be a (genus one) polygon P,. Then:
e r(a—b) =—1if a # b by Corollary 1.8 (a) above, but r(0) = 0.
e r(v) =0 for all v € V(P,), since |v| = {v} by Corollary 1.8 (a).

Exercise. Show that the 0 divisor on P, is “special” in the sense that
r(0) =0, but (D) = d — 1 for all other divisors of all degrees d > 0.



Definition 1.10. The canonical divisor of a graph I' is the divisor:

Ky = Z(val(v) -2

veV
Remark. deg(Kr) = 2(#E — #V) = 2¢(T") — 2 by the genus formula.
Example. (a) Kp, = 0 is the special divisor on a polygon.

(b) Consider the complete graph Ky on 4 vertices vy, ve, v3,v4, Then:
Kr = v +v2 +v3 +v4 and

|Kr| = {v1 +v2 + v3 + v4,4v;} hasrank 2 =g — 1

Exercise. Catalog the other divisor classes |D| C V4 for the graph Ky and
check that each of them has rank 1.

We will eventually prove:

The Riemann-Roch Theorem (for graphs). For any divisor D on T,
r(D) —r(Kr — D) = deg(D) +1 — g(T')

One simple consequence of this is:

(i) r(Kr) = g(T) — 1 and

(ii)) (D) = g(T") — 2 if deg(D) = 2¢g(I") — 2 and |D| # |KT|.
Definition 1.11. D € V; is special if (D) > 0 and »(Kt — D) > 0.

Definition 1.12. If either (a) r(D) = (D —p) or (b) r(D+p) =r(D)+1
then |D| is a redundant divisor class, since its rank is determined by the
rank of a “more special” divisor class.

The irredundant divisor classes | D| of special divisors are the “signature”
of a graph, distinguishing it from other graphs of the same genus. In the
same way, the special divisors will be the “signature” of a Riemann Surface.

Examples. Consider the following “test” graphs:
e The complete bipartite graphs K, , of genus (m —1)(n — 1).
e The complete graphs Ky of genus (d — 1)(d — 2)/2.

Exercise. If D is a special divisor, then 0 < deg(D) < 2g — 2. and |D| is
special (and irredundant) if and only if | Kt —D| is special (and irredundant).

Let’s consider the first few genera:



genus zero There are no special divisors in genus zero.

genus one The zero divisor is special in all genera g > 0. In genus one, |0|
is the only special divisor class (and it is irredundant).

Each K, has two natural divisor classes, namely:
|v1 4+ -+ | and |wy + -+ - + wy|

where the v; and w; are the vertices of the two sets of the bipartite graph.
Then:
r(oi+- 4oy =1=r(w + -+ wy)

and each v; has valence n and each w; has valence m.

The hyperelliptic complete bipartite graphs K, satisfy n = g — 1 and
Kr = (g—1)(v1 +v3). The divisor classes |k(vi +v2)| for k =0, ...,g—1 have
rank k and are all the special irredundant divisor classes (sids) on I' = K»

genus two For graphs of genus g > 1, there are no sids of degree one, by
Corollary 1.8. Thus the only sid classes on a graph I' of genus two are |0]
and |Kr|. In particular, when I' = K 3, we have K1 = v + v and the class
|wi + wa + w3 is not special, but it is irredundant.

genus three Consider the two graphs K4 and K4. Then:

e The sids of degree < 3 on I'g 4 are |0 and |v1 + v2| with

|KF — (U1 —|—U2)’ = |U1 +U2‘

e The only sid classes on Ky are |0| and |Kp|.
genus four

e The graph K 5 has sids |0|, |v1 + v2| in the degree range [0, 3] and sids
|Kr| and |KT — (v1 + v2)| = |2(v1 4+ v2)| in the range [4, 6].

e The graph K33 has no sids of degree two, but:
|v1 + v + v3] # w1 + we + w3

are distinct sid classes of rank one, with K — (v +v2 +v3) = (w1 +we +ws3).
These (together with 0 and KT) are the only sids on K3 3.

Exercise. genus six. Find the sids for K7, K34 and Ks.

Next, we introduce a very powerful idea for playing the game:



Definition 1.13. Let I be a graph, and fix ¢ € V. Then a divisor:
D=F+ng neZ

is g-reduced if E is effective and firing from every subset S C V — {q} puts
some vertex (other than ¢) in a deficit.

These divisors are a useful tool for analyzing divisor classes because of:

Dhar’s Burning Algorithm. (i) For each ¢ € V', every divisor D € Z[V]
is equivalent to a unique g-reduced divisor Dy € Z[V].

(ii) A divisor E + ng with E effective can be checked for g-reducibility
by the following burning algorithm:

Think of the chips of E as firefighters. Light a fire at ¢ and let it
spread through the graph. If a vertex p is occupied by fewer firefighters
than incoming fires, they are overwhelmed and the fire spreads to p. The
fire eventually spreads to the entire graph if and only if D is g-reduced.

Proof. Given ¢, the distance d(p,q) from ¢ to p € V is the length of
the shortest path from ¢ to p. Given D, fire chips from ¢ until each vertex
p € V with d(p,q) = 1 is out of debt. Then fire additional chips until each
such vertex has at least val(p) chips. At that point, we may fire from all
the vertices p without putting any of them into debt. Then we return to ¢
and fire again until we can fire a second time from each vertex p, eventually
putting all the vertices o with d(q,0) = 2 out of debt. We continue in this
vein until we obtain a divisor of the form E + ng with E effective.

Next, either E + ngq is g-reduced, or else there is a subset S C V — {q}
from which may fire to obtain a new divisor E' + nq. If there is p € S
with d(g,p) = 1, then this increases the coefficient of ¢ and in that sense
“improves” the situation. If not, we need another measure to see that £’ is
an improvement on F. To this end, we define a “word” associated to the
effective divisor E=3_ , epp:

w(E) = (di, ..., dy,) where d; = Z ep
d(q,p)=i

with the lexicographic ordering (in which, e.g. (3,0,0) > (2,1,0) > (2,0,1))
Then if d(q,p) > 1 for all p € S, the new divisor E’ satisfies w(FE’) > w(E) in
the lexicographic ordering since the vertices p € S minimizing the distance
d(q,p) will fire chips into vertices that are closer to ¢!



To prove uniqueness, let E + ng ~ E' + mq be a non-trivial equivalence
realized via a sequence of chip firings and as in Lemma 1.6, accumulate
them into a divisor C' = > ¢,v with ¢ = max,{c,} and set S = {v | ¢, = c}.
Then as in Lemma 1.6, firing from the vertices of S cannot put any vertex
of S into debt. Thus, if ¢ &€ S, it follows that E + nq is not g-reduced. On
the other hand, if ¢ € S, then we use the complementary chain of subsets
SE C --- C SY (realizing the reverse chip firings) to conclude that g ¢ S¢
and therefore that E'+mgq is not g-reduced! This concludes the proof of (i).

As for (ii), if E + ng is not g-reduced, let S C V — {q} be a set from
which firing produces a new divisor E' + mgq. Then the firefighters on the
perimeter of S (the set of vertices with edges connecting S to S¢) prevent
the forest fire from lighting the vertices of S. On the other hand, if the forest
fire fails to burn the full graph, then the unburnt vertices must comprise a
set S from which firing exhibits E + ng as a non-g-reduced divisor. O

Corollary 1.14. |D| # 0 if and only if D, is effective for all g € V.

Proof. If D, is effective, then D ~ D, so |D| # (). On the other hand,
if D ~ D' and D’ is effective, then for each ¢ € V, either D' = FE + ngq is
g-reduced, or else firing from some S C V — {q} produces D" = E' 4+ n/q,
with E' effective and n’ > n (since ¢ is a “taker”). In particular, D, is
obtained by a finite number of such chip-firings, so it is effective. O

Project. Use this to design an efficient algorithm for finding r(D).
For each orientation O of a finite connected graph T, let:
Do = Z(Ualm(v) — 1w
veV

where val;,(v) is the incoming valence (of edges pointing to v). Then:
deg(Dp) =g —1and Dp + Dp- = Kr

where O is the opposite orientation. Note that Dy is an effective divisor
away from the sources of O, i.e. the vertices with only outgoing edges, and
Dp- is effective away from the sinks of O (= sources of O7).

Definition 1.15. O is acyclic if I has no oriented circuits.
Note that O is acyclic if and only if O~ is acyclic.

Construction. Number the vertices V of a graph with no loops, and orient
each edge so that it points from v; to v; if © < j. This is an acyclic orientation
with v1 as a source and v, as a sink (but there can be more, of course!).



Lemma 1.16. An acyclic orientation has both sources and sinks, i.e. both
the divisors Do and Dgy- fail to be effective when O is acyclic.

Proof. Start from some vertex v and construct a path consisting of
an arbitrarily chosen outward pointing edge from each vertex. If O has no
sources and is acyclic, then this path never visits the same vertex twice, and
therefore continues indefinitely, contradicting the finiteness of I'. O

Let D, = ng + E be a g-reduced divisor and orient the edges of the
graph I" outward with the spread of the all-consuming fire from the burning
algorithm. If the fire reaches a set S of vertices simultaneously, orient the
subgraph spanned by S as in the construction. Then O satisfies:

(a) O is acyclic.
(b) The vertex ¢ is the unique source.

(¢) The divisor Dp = —q + Ep is ¢-reduced (and deg(Ep) = g).
In particular, r(Dp) = —1.

(d) Ep — E is an effective divisor.
As an immediate Corollary, we get:
Jacobi Inversion Theorem. If deg(D) > g, then |D| # 0.

Proof. Pick ¢ € V and let D, = ng+ E be the unique g-reduced divisor
equivalent to D. From (c) and (d), deg(F) < g, son > 0 and D, is effective!

Of course, it follows that if deg(D) > g + r, then r(D) > r.



