
Riemann Surfaces and Graphs
1. Chip Firing on Graphs

Let Γ be a connected graph with no loops.

Firing 1.0. Firing from a vertex v1 ∈ V converts a divisor D0 =
∑
dvv to:

D1 = (dv1 − val(v1))v1 +
∑

neighbors of v1

(dw + 1)w +
∑

other vertices

dvv

i.e. thinking of dv as the number of dollars owned (or owed) by v, firing sends
one dollar from v1 to each neighboring vertex. Then deg(D0) = deg(D1),
i.e. the total number of dollars owned (or owed) is unchanged by firing.

Definition 1.1. Divisors D,D′ (of the same degree) are chip-related if there
is a sequence of chip firings from vertices v1, v2, ...., vn ∈ V giving:

D = D0
v1 D1  · · ·

vn Dn = D′

Example. Let Γ be the triangle with adjacent vertices abc. Then

2a
a
 b+ c

b
 a− b+ 2c

c
 2a

Lemma 1.2. Being chip-related is an equivalence relation (denoted by ∼).

Proof. If S ⊂ V , then firing once from all vertices of S (in any order)
has the net effect of passing one dollar across each edge joining S to Sc. In
particular, firing once from all the vertices of V (as in the example above)
returns each divisor to itself, so the chip-relation is reflexive. This also
shows that chip-firing from v has an inverse, namely firing once from each
vertex in V −{v}, and it follows that the chip-relation is symmetric. Finally,
transitivity is immediate from the definition.

Let D ∈ Z[V ] be a divisor of degree d (not necessarily effective).

Definition 1.3. |D| ⊂ Vd is the set of effective divisors in the equivalence
class of D. In particular, |D| = ∅ if D is not chip-related to any effective
divisors (e.g. in the case d < 0).

The Game. Given a divisor D of degree ≥ 0, try to create an effective
divisor by chip-firing. Then find the entire equivalence class |D| and use
this information to distinguish graphs. In the context of Riemann Surfaces,
the analogues of |D| are the (complete) linear series. We will see that these
equivalence classes are also “linear” by making use of the tropical numbers.
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Example. Let Γ = {a, b, c, d, e, f} be the (adjacent) vertices of a hexagon.
Then |2a| = {2a, b + f, c + e, 2d} = |2a|, but the equivalence b + f ∼ c + e
requires the firing of the three vertices a, b and f !

Proposition 1.4. If e ∈ E is a bridge, i.e. removing e disconnects Γ, then
the ends p and q of the edge e satisfy p ∼ q.

Proof. Let p ∈ S and q ∈ Sc be the vertices of the two connected
components of Γ− {e}. Then firing from all the vertices of S sends exactly
one dollar across the vertex e from p to q.

Corollary 1.5. (a) If g(Γ) = 0, then all vertices are equivalent as divisors.

(b) If g(Γ) = 0, then all divisors of any degree are equivalent.

Proof. Each edge of a tree is a bridge. This gives (a). For (b), we use

the fact that if D0
v
 D1, then D0 +E

v
 D1 +E for any divisor E, hence:

D ∼ D′ ⇒ D + E ∼ D′ + E

for any divisor E, and then (b) follows immediately from (a).

Next, we prove a converse to Proposition 1.4 using the following:

Lemma 1.6. If D,D′ ∈ Vd and D ∼ D′, then there is a chain of subsets
S1 ⊆ S2 ⊆ · · · ⊆ Sm ⊂ V such that firing from the vertices of Si:

D = D0
S1 D1

S2 D2 · · · Dm = D′

gives a sequence of equivalent effective divisors Di ∈ Vd.

Proof. Let the equivalence D ∼ D′ be given by chip-firings of vertices:
v1, ..., vn and sum the vertices to create an effective divisor:

C1 = v1 + · · ·+ vn =
∑
v∈V

cvv

(note that chip-firing commutes!). Now let c = max {cv} and let:

S1 = {v | cv = c}

Next let C2 = C1−
∑

v∈S1
v, define S2 analogously, and proceed by induction.

This produces an increasing chain of subsets of V that accounts for the all
the chip firings of the equivalence relation. Thus we do get a sequence of
chip firings and equivalent divisors as above.
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If Di−1 is effective but some vertex v has a negative coefficient in Di,
then necessarily v ∈ Si, because the vertices of Si are the “givers” of dollars.
But then v is a “giver” vertex in all subsequent firings, since the sets are
nested, so v never has an opportunity to “take” a dollar and return to a
positive coefficient. Since the final divisor D′ is assumed to be effective, it
follows that there is no such vertex v.

Proposition 1.7. If p ∼ q, then there is a path of bridges from p to q.

Proof. Let p = p0
S1 p1

S2 · · · pn = q be the sequence of chip firings
from the Proposition. (An effective divisor of degree one is a vertex!) Then
out of each set Si there must be a single edge joining Si to Sc

i , passing from
pi−1 to pi. That is, the edge with ε(e) = pi−1 + pi must be a bridge.

Corollary 1.8. (a) The (distinct) vertices of a circuit are not equivalent.

(b) The vertex set of the “debridgification” graph Γdeb obtained from Γ
by collapsing all the bridges is in a natural bijection with the equivalence
classes |p| of the vertices of Γ. Notice that g(Γdeb) = g(Γ), since collapsing
each bridge reduces both the vertex set and the edge set by one element.

A leaf is a bridge from a singleton (valence one) vertex to the rest of Γ.
The “deleafification” Γdel is a partial debridgification obtained by collapsing
only leaves, resulting in a graph whose vertices all have valence 2 or more.

Examples. (i) If g(Γ) = 0, then Γdel = Γdeb is a singleton vertex.

(ii) If g(Γ) = 1, then Γdel has only vertices of valence two, and it follows
that Γdel = Γdeb is a polygon Pn with n vertices and n edges.

(iii) Joining a polygon Pm with a polygon Pn via a bridge from one vertex
of Pm to a vertex of Pn gives a genus two graph with a bridge and no leaves.

Next, we define the rank r(D) of a divisor D.

Definition 1.9. r(D) = −1 if |D| = ∅. Otherwise, r(D) ≥ 0 is the maximal
integer so that for all E ∈ Vr, there is an F ∈ Vd−r with E + F ∈ |D|.

Examples. (a) If D is a divisor of degree d on a tree, then |D| = Vd is the
set of all effective divisors of degree d, so r(D) = d

(b) Let Γ be a (genus one) polygon Pn. Then:

• r(a− b) = −1 if a 6= b by Corollary 1.8 (a) above, but r(0) = 0.

• r(v) = 0 for all v ∈ V (Pn), since |v| = {v} by Corollary 1.8 (a).

Exercise. Show that the 0 divisor on Pn is “special” in the sense that
r(0) = 0, but r(D) = d− 1 for all other divisors of all degrees d ≥ 0.
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Definition 1.10. The canonical divisor of a graph Γ is the divisor:

KΓ =
∑
v∈V

(val(v)− 2)v

Remark. deg(KΓ) = 2(#E −#V ) = 2g(Γ)− 2 by the genus formula.

Example. (a) KPn = 0 is the special divisor on a polygon.

(b) Consider the complete graph K4 on 4 vertices v1, v2, v3, v4, Then:

KΓ = v1 + v2 + v3 + v4 and

|KΓ| = {v1 + v2 + v3 + v4, 4vi} has rank 2 = g − 1

Exercise. Catalog the other divisor classes |D| ⊂ V4 for the graph K4 and
check that each of them has rank 1.

We will eventually prove:

The Riemann-Roch Theorem (for graphs). For any divisor D on Γ,

r(D)− r(KΓ −D) = deg(D) + 1− g(Γ)

One simple consequence of this is:

(i) r(KΓ) = g(Γ)− 1 and

(ii) r(D) = g(Γ)− 2 if deg(D) = 2g(Γ)− 2 and |D| 6= |KΓ|.

Definition 1.11. D ∈ Vd is special if r(D) ≥ 0 and r(KΓ −D) ≥ 0.

Definition 1.12. If either (a) r(D) = r(D− p) or (b) r(D+ p) = r(D) + 1
then |D| is a redundant divisor class, since its rank is determined by the
rank of a “more special” divisor class.

The irredundant divisor classes |D| of special divisors are the “signature”
of a graph, distinguishing it from other graphs of the same genus. In the
same way, the special divisors will be the “signature” of a Riemann Surface.

Examples. Consider the following “test” graphs:

• The complete bipartite graphs Km,n of genus (m− 1)(n− 1).

• The complete graphs Kd of genus (d− 1)(d− 2)/2.

Exercise. If D is a special divisor, then 0 ≤ deg(D) ≤ 2g − 2. and |D| is
special (and irredundant) if and only if |KΓ−D| is special (and irredundant).

Let’s consider the first few genera:
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genus zero There are no special divisors in genus zero.

genus one The zero divisor is special in all genera g ≥ 0. In genus one, |0|
is the only special divisor class (and it is irredundant).

Each Km,n has two natural divisor classes, namely:

|v1 + · · ·+ vm| and |w1 + · · ·+ wn|

where the vi and wj are the vertices of the two sets of the bipartite graph.
Then:

r(v1 + · · ·+ vm) = 1 = r(w1 + · · ·+ wn)

and each vi has valence n and each wj has valence m.

The hyperelliptic complete bipartite graphs K2,n satisfy n = g − 1 and
KΓ = (g−1)(v1 +v2). The divisor classes |k(v1 +v2)| for k = 0, ..., g−1 have
rank k and are all the special irredundant divisor classes (sids) on Γ = K2,n

genus two For graphs of genus g ≥ 1, there are no sids of degree one, by
Corollary 1.8. Thus the only sid classes on a graph Γ of genus two are |0|
and |KΓ|. In particular, when Γ = K2,3, we have KΓ = v1 + v2 and the class
|w1 + w2 + w3| is not special, but it is irredundant.

genus three Consider the two graphs K2,4 and K4. Then:

• The sids of degree ≤ 3 on Γ2,4 are |0| and |v1 + v2| with

|KΓ − (v1 + v2)| = |v1 + v2|

• The only sid classes on K4 are |0| and |KΓ|.

genus four

• The graph K2,5 has sids |0|, |v1 + v2| in the degree range [0, 3] and sids
|KΓ| and |KΓ − (v1 + v2)| = |2(v1 + v2)| in the range [4, 6].

• The graph K3,3 has no sids of degree two, but:

|v1 + v2 + v3| 6= |w1 + w2 + w3|

are distinct sid classes of rank one, with K− (v1 +v2 +v3) = (w1 +w2 +w3).
These (together with 0 and KΓ) are the only sids on K3,3.

Exercise. genus six. Find the sids for K2,7,K3,4 and K5.

Next, we introduce a very powerful idea for playing the game:
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Definition 1.13. Let Γ be a graph, and fix q ∈ V . Then a divisor:

D = E + nq; n ∈ Z

is q-reduced if E is effective and firing from every subset S ⊂ V − {q} puts
some vertex (other than q) in a deficit.

These divisors are a useful tool for analyzing divisor classes because of:

Dhar’s Burning Algorithm. (i) For each q ∈ V , every divisor D ∈ Z[V ]
is equivalent to a unique q-reduced divisor Dq ∈ Z[V ].

(ii) A divisor E + nq with E effective can be checked for q-reducibility
by the following burning algorithm:

Think of the chips of E as firefighters. Light a fire at q and let it
spread through the graph. If a vertex p is occupied by fewer firefighters
than incoming fires, they are overwhelmed and the fire spreads to p. The
fire eventually spreads to the entire graph if and only if D is q-reduced.

Proof. Given q, the distance d(p, q) from q to p ∈ V is the length of
the shortest path from q to p. Given D, fire chips from q until each vertex
p ∈ V with d(p, q) = 1 is out of debt. Then fire additional chips until each
such vertex has at least val(p) chips. At that point, we may fire from all
the vertices p without putting any of them into debt. Then we return to q
and fire again until we can fire a second time from each vertex p, eventually
putting all the vertices o with d(q, o) = 2 out of debt. We continue in this
vein until we obtain a divisor of the form E + nq with E effective.

Next, either E + nq is q-reduced, or else there is a subset S ⊂ V − {q}
from which may fire to obtain a new divisor E′ + nq. If there is p ∈ S
with d(q, p) = 1, then this increases the coefficient of q and in that sense
“improves” the situation. If not, we need another measure to see that E′ is
an improvement on E. To this end, we define a “word” associated to the
effective divisor E =

∑
p 6=q epp:

w(E) = (d1, ...., dm) where di =
∑

d(q,p)=i

ep

with the lexicographic ordering (in which, e.g. (3, 0, 0) > (2, 1, 0) > (2, 0, 1))
Then if d(q, p) > 1 for all p ∈ S, the new divisor E′ satisfies w(E′) > w(E) in
the lexicographic ordering since the vertices p ∈ S minimizing the distance
d(q, p) will fire chips into vertices that are closer to q!
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To prove uniqueness, let E + nq ∼ E′ +mq be a non-trivial equivalence
realized via a sequence of chip firings and as in Lemma 1.6, accumulate
them into a divisor C =

∑
cvv with c = maxv{cv} and set S = {v | cv = c}.

Then as in Lemma 1.6, firing from the vertices of S cannot put any vertex
of S into debt. Thus, if q 6∈ S, it follows that E + nq is not q-reduced. On
the other hand, if q ∈ S, then we use the complementary chain of subsets
Sc
n ⊂ · · · ⊂ Sc

1 (realizing the reverse chip firings) to conclude that q 6∈ Sc
n

and therefore that E′+mq is not q-reduced! This concludes the proof of (i).

As for (ii), if E + nq is not q-reduced, let S ⊂ V − {q} be a set from
which firing produces a new divisor E′ + mq. Then the firefighters on the
perimeter of S (the set of vertices with edges connecting S to Sc) prevent
the forest fire from lighting the vertices of S. On the other hand, if the forest
fire fails to burn the full graph, then the unburnt vertices must comprise a
set S from which firing exhibits E + nq as a non-q-reduced divisor.

Corollary 1.14. |D| 6= ∅ if and only if Dq is effective for all q ∈ V .

Proof. If Dq is effective, then D ∼ Dq, so |D| 6= ∅. On the other hand,
if D ∼ D′ and D′ is effective, then for each q ∈ V , either D′ = E + nq is
q-reduced, or else firing from some S ⊂ V − {q} produces D′′ = E′ + n′q,
with E′ effective and n′ ≥ n (since q is a “taker”). In particular, Dq is
obtained by a finite number of such chip-firings, so it is effective.

Project. Use this to design an efficient algorithm for finding r(D).

For each orientation O of a finite connected graph Γ, let:

DO =
∑
v∈V

(valin(v)− 1)v

where valin(v) is the incoming valence (of edges pointing to v). Then:

deg(DO) = g − 1 and DO +DO− = KΓ

where O− is the opposite orientation. Note that DO is an effective divisor
away from the sources of O, i.e. the vertices with only outgoing edges, and
DO− is effective away from the sinks of O (= sources of O−).

Definition 1.15. O is acyclic if Γ has no oriented circuits.

Note that O is acyclic if and only if O− is acyclic.

Construction. Number the vertices V of a graph with no loops, and orient
each edge so that it points from vi to vj if i < j. This is an acyclic orientation
with v1 as a source and vn as a sink (but there can be more, of course!).
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Lemma 1.16. An acyclic orientation has both sources and sinks, i.e. both
the divisors DO and DO− fail to be effective when O is acyclic.

Proof. Start from some vertex v and construct a path consisting of
an arbitrarily chosen outward pointing edge from each vertex. If O has no
sources and is acyclic, then this path never visits the same vertex twice, and
therefore continues indefinitely, contradicting the finiteness of Γ.

Let Dq = nq + E be a q-reduced divisor and orient the edges of the
graph Γ outward with the spread of the all-consuming fire from the burning
algorithm. If the fire reaches a set S of vertices simultaneously, orient the
subgraph spanned by S as in the construction. Then O satisfies:

(a) O is acyclic.

(b) The vertex q is the unique source.

(c) The divisor DO = −q + EO is q-reduced (and deg(EO) = g).
In particular, r(DO) = −1.

(d) EO − E is an effective divisor.

As an immediate Corollary, we get:

Jacobi Inversion Theorem. If deg(D) ≥ g, then |D| 6= ∅.

Proof. Pick q ∈ V and let Dq = nq+E be the unique q-reduced divisor
equivalent to D. From (c) and (d), deg(E) ≤ g, so n ≥ 0 and Dq is effective!

Of course, it follows that if deg(D) ≥ g + r, then r(D) ≥ r.
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