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7. Riemann-Roch. Let D be a divisor (not necesarily effective) on
a non-singular curve C ⊂ CPn. Recall that:

L(D) = {φ ∈ K(C)∗ | div(φ) +D ≥ 0} ∪ {0} ⊂ K(C)

is a finite-dimensional vector space over C of dimension l(D).

Theorem 7.1 (“Classical” Riemann-Roch).

l(D)− l(KC −D) = deg(D) + 1− g
where g is defined by the equation deg(KC) = 2g − 2.

We will prove this with a mix of algebra and analysis, following
Mumford’s Algebraic Geometry I; Complex Projective Varieties.

A Plausibility Argument. A (rational) differential ω ∈ Ω(C) has
a well-defined notion of a residue at each point p ∈ C. If z is a local
(analytic) coordinate near p, with z = 0 at p, and if:

ω = (b−dz
−d + · · ·+ b−1z

−1 + b0 + ...)dz

then

resp(ω) =
1

2πi

∫
γ

ω = b−1

where γ is an oriented (small) loop around p. This is remarkable, since
it tells us that the coefficient of z−1 is intrinsic to the differential, and
does not depend upon the choice of analytic local coordinate.

If D =
∑
dipi ≥ 0 and zi are local coordinates near pi, we may let:

V =
{
ai,−diz

−di
i + ...+ ai,−1z

−1
i

}n
i=1

be the vector space of “potential Laurent parts” of a function f ∈ L(D).
The Mittag-Loeffler problem asks when a potential Laurent part is the
collection of Laurent tails of some f ∈ L(D). Notice that if f1, f2 both
solve the same Mittag-Loeffler problem, then:

f1 − f2 is holomorphic everywhere, hence constant

so the solutions are unique, up to addition of a constant.

With residues, we see that the regular differentials on C produce
conditions on solvability of the Mittag-Loeffler problem. Specifically:

n∑
i=1

respi(fω) = 0

for any f ∈ L(D) and ω ∈ Ω[C] by Stokes’ Theorem.
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This is a linear condition on Laurent parts in V . If

{(bi,0 + · · · bi,di−1z
di−1
i )dzi}ni=1

are the initial parts of the differential ω at each pi, then:
n∑
i=1

respi(fω) =
n∑
i=1

(ai,−dibi,di−1 + ...+ ai,−1bi,0)

and this is only identically zero if all the initial parts of ω are zero, i.e.
ω ∈ L(KC) fails to impose a linear condition on V iff ω ∈ L(KC −D).
Thus:

dim(L(D)/C) ≤ dim(V )− dim(L(KC)/L(KC −D))

which (since dim(V ) = deg(D)) gives an inequality:

l(D)− l(KC −D) ≤ deg(D) + 1− l(KC)

We will see that the inequality is an equality, and that l(KC) = g
which will give us the Riemann-Roch Theorem.

A Reduction. Suppose for every D there is a divisor E such that:

(i) E −D ≥ 0 (i.e. D “is contained in” E), and

(ii) the Riemann-Roch Theorem holds for E.

Then the Riemann-Roch Theorem holds for every D.

Proof. If D =
∑
dipi and E =

∑
eipi with ei ≥ di, let:

V = {ai,−eiz
−ei
i + · · ·+ ai,−di+1z

−di+1
i }ni=1

be the space of Laurent tails “between” an f ∈ L(D) and a g ∈ L(E).
Then the natural “Laurent tail map” T has kernel L(D):

0→ L(D)→ L(E)
T→ V

since a rational function in L(D) is a rational function in L(E) with
no Laurent tail between D and E.

Next, consider the residue pairing with a differential ω ∈ L(KC−D):

res : V × L(KC −D)→ C; v × ω 7→
∑
i

respi(v · ω)

where v ·ω is understood to be the set of n locally defined differentials:

{ai,−eiz
−ei
i + · · ·+ ai,−di+1z

−di+1
i } · ω

near each point pi ∈ C. Then res(v, ω) = 0 ∀v ∈ V ⇔ ω ∈ L(KC−E)
since only a differential with zeroes of order ei or more at each pi will
produce a zero overall residue (as in the plausibility argument above).
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But if g ∈ L(E), then
n∑
i=1

respi(T (g) · ω) =
n∑
i=1

respi(gω) = 0

by Stokes’ theorem, so the image of T pairs with zero against any
differential in L(KC − D). This gives us the following sequence of
vector spaces that is exact everywhere except (possibly) the middle:

0→ L(E)/L(D)
T→ V

res→ L(KC −D)∗/L(KC − E)∗ → 0

where the latter map res is defined via the residue pairing.

It follows that:

deg(E)− deg(D) = dim(V ) ≥ l(E)− l(D) + l(KC −D)− l(KC − E)

and therefore that if:

l(E)− l(KC − E) = deg(E) + 1− g
then:

l(D)− l(KC −D) ≥ deg(D) + 1− g
On the other hand, we may apply the same argument with the roles

of D and KC−D reversed (containing KC−D in a divisor E for which
Riemann-Roch holds) to get:

l(KC −D)− l(D) ≥ deg(KC −D) + 1− g = (2g− 2)− deg(D) + 1− g
which gives us the opposite inequality and hence equality. �

Now we get to the heart of the matter by connecting linear series
with the homogeneous coordinate ring:

R = C[x0, ..., xn]/I(C) of the embedded curve C ⊂ CPn

Observation. Each homogeneous Fd ∈ Rd defines an effective divisor
Ed on C via the following:

ordp(Fd) := ordp(Fd/G) for any G ∈ Rd with G(p) 6= 0 and

Ed := div(Fd) =
∑
p∈C

ordp(Fd) · p

and notice that if div(F ′d) = E ′d, then div(F ′d/Fd) +Ed = E ′d so all such
divisors are linearly equivalent. We get injective maps:

fd : Rd → L(Ed); G 7→ G/Fd for all d ≥ 0

Proposition 7.1. There is a d0 such that fd is surjective for all d ≥ d0.

In other words, there is a d0 such that:

(*) If d ≥ d0 and D ∈ |Ed| then D = div(G) for some G ∈ Rd.
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This will show, in particular, that l(Ed) = dim(Rd) for all d ≥ d0 is
computed by the Hilbert polynomial of R.

Assume C does not lie in any of the coordinate hyperplanes, and let
Hi = div(xi), and consider any of the exact sequences:

0→ Rd−1
·xi→ Rd

rd→ (RHi
)d

Then:

RHi
= C[x0, ..., xn]/〈xi, I(C)〉

has constant Hilbert polynomial δ = deg(Hi), the degree of C ⊂ CPn,
so the Hilbert polynomial of R is hR(d) = dδ + c for some constant c,
and therefore (after possibly raising the value of d0),

l(Ed) = dδ + c = deg(Ed) + c for all d ≥ d0

since deg(Ed) = d · deg(Hi). Also, since deg(Ed) > 2g − 2 for large d,
if we can additionally show that

c = 1− g

then we have the Riemann-Roch theorem for all E = Ed and d ≥ d0.

To prove the Proposition, we will use three tools:

(a) Noether Normalization. Under a “general” projection:

πV : C → CP1

(from a codimension two subspace V ⊂ Cn+1), R is a finitely generated
graded module over the homogeneous coordinate ring C[z0, z1] of CP1

(with z0 =
∑
aixi and z1 =

∑
bixi).

(b) Nullstellensatz. If φ ∈ K(C) is regular at all points of C ∩ Ui,
i.e. if φ ∈ OC,p for all p ∈ C ∩ Ui, then:

φ ∈ C[C ∩ Ui] =

{
F

xNi
| F ∈ RN

}
⊂ K(C)

is in the coordinate ring of the affine curve C ∩ Ui ⊂ Ui = Cn.

(c) Let M be a finitely generated graded torsion-free module over
C[z0, ..., zr], and let MK be the localization of M with respect to the
field C(z0, ..., zr). Then there is a d0 such that, for all d ≥ d0, if

m ∈MK and zN0 m, ..., z
N
r m ∈MN+d for some N

then

m ∈Md
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Let us assume (a)-(c) for now and use them to prove the Proposition.
Suppose D ∈ |Ed|. Since |Ed| = |dHi| for each i, there are rational
functions φi ∈ K(C) such that:

div(φi) = D − dHi

from which we conclude that div(φi/φj) = div(xdj/x
d
i ) hence φi/φj is

a constant multiple of xdj/x
d
i . After multiplying each φi by a suitable

constant, we can arrange for:

F = φ0x
d
0 = φ1x

d
1 = · · · = φnx

d
n ∈ K(R)

and moreover div(F ) = D, so we need to show that there is a d0 such
that F ∈ Rd if d ≥ d0. We now invoke (a)-(c) as follows:

(a) Choose a generic projection so that R is a finitely generated
(graded) module over C[z0, z1]. It follows that the field of fractions
K(R) agrees with the localization RK of R at K = C(z0, z1), and in
particular that if m1, ...,mk generate R as a C[z0, z1]-module, then a
subset of the m′is are a basis for RK as a vector space over C(z0, z1).

(b) Since div(φi) = D − dHi only has negative coefficients at points
of C − C ∩ Ui, it follows that the φi ∈ OC,p for all p ∈ C ∩ Ui, hence
φi ∈ C[C ∩ Ui], and so for some N and all i, we have xNi φi ∈ RN , so:

xN0 F, ...., x
N
n F ∈ RN+d

(c) It follows that for N ′ > (n+1)(N−1), every monomial of degree
N ′ in x0, ..., xn has degree N or more in some xi, hence:

zN
′

0 F, zN
′

1 F ∈ RN ′+d

(since z0 =
∑n

i=0 aixi and z1 =
∑n

i=0 bixi). Thus there is a d0 such
that, for all d ≥ d0, we have F ∈ Rd, proving Proposition 7.1. �

Computation of the Constant. Consider a projection:

πV : C → CP2

for V ⊂ Cn+1 a general subspace of codimension three.

Claim. The image of πV is a nodal curve, and πV “resolves” the nodes.

Sketch of the Proof. Any projection πV is a composition:

πqr ◦ · · · ◦ πq1 : C → CP2

of projections from points (in successively smaller projective spaces).
So it suffices to show that for general choice of q ∈ CPn,

πq : C → CPn−1

is an embedding if n > 3 and a resolution of a nodal curve if n = 3.
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This is accomplished with a dimension count. Namely, if C ⊂ CPn,
consider the “secant” mapping to the Grassmannian:

s : C × C → Gr(2,Cn+1); (p1, p2) 7→ p1p2

and the incidence correspondence:

Fl(1, 2,Cn+1)
↙ π1 π2 ↘

CPn Gr(2,Cn+1)

from the flag manifold. Then the locus of points q ∈ CPn that lie on a
secant line of C is:

π1(π
−1
2 (s(C × C)))

which has dimension at most 3, and therefore cannot fill CPn if n > 3
and the projection is injective if q lies on no secant line. Similarly, for
the tangent map t : C → Gr(2,Cn+1):

π1(π
−1
2 t(C))

is (at most) two-dimensional, and it follows that the projection is an
immersion if q lies on no tangent line. This shows that the general
projection to CP3 (or higher) is an embedding, and moreover a general
projection to CP2 is an immersion. To see that all the singular points
of the latter are nodes requires a more delicate but similar analysis of
the loci of trisecant lines and “parallel tangent” lines to a curve in CP3.

We are now ready to invoke the genus computation of §6. Namely,

g =

(
δ − 1

2

)
− ν

where 2g−2 = deg(KC) and ν is the number of nodes in πV (C) ⊂ CP2.
Finally, we need a Hilbert polynomial computation:

hπV (C)(d) =

(
d+ 2

2

)
−
(
d+ 2− δ

2

)
= dδ + 1−

(
δ − 1

2

)
because πV (C) ⊂ CPn is a plane curve of degree δ, and the Hilbert
polynomial of C ⊂ CPn can be shown to satisfy:

hC(d) = hπV (C)(d) + ν

giving the desired computation of the constant term.

Finally, Riemann-Roch follows from the reduction since every divisor
D on C can be evidently contained in a divisor of the form Ed for any
sufficiently large value of d! �


