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3. Projective Hypersurfaces. A homogeneous polynomial of degree
d in variables x0, ..., xn is a nonzero linear combination:

F ∈ C[x0, ..., xn]d

of monomials xd10 · · ·xdnn with d1 + · · ·+ dn = d.

Homogeneneity refers to fact that:

F (λb) = λdF (b) for b = (b0, ..., bn) and λ ∈ C
and therefore, in particular, F determines a well-defined hypersurface:

V (F ) = {(b0 : ... : bn) | F (b0, ..., bn) = 0} ⊂ CPn

The action of PGL(n+ 1,C) on CPn:

A(b0 : ... : bn) =


a00 a01 · · · a0n

a10 a11 · · · an1
...

...
an0 an1 · · · ann



b0

b1
...
bn

 =


a00b0 + · · ·+ a0nbn
a10b0 + · · ·+ a1nbn

...
an0b0 + · · · annbn


induces an linear action on homogeneous polynomials via:

(AF )(x0 : ... : xn) = F (A−1(x0 : ... : xn))

so that the hypersurfaces transform consistently: A(V (F )) = V (AF ).

Definition 3.1. Two hypersurfaces in CPn are projectively equivalent
if they are in the same orbit under the action of PGL(n+ 1,C).

Two central problems immediate present themselves:

(i) Understand/describe the hypersurfaces of a given degree in CPn.

(ii) Understand the intersections of hypersurfaces (in CPn).

focusing on properties that are invariant under projective equivalence
(which is, after all, “just” changing the choice of basis of Cn+1).

As a first example:

Definition 3.2. A hypersurface associated to a prime F is irreducible.

Remark. By unique factorization, every polynomial F factors:

F =
m∏
i=1

Fi

as a product of primes.
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Thus every hypersurface V (F ) is a finite union:

V (F ) = V (F1) ∪ · · · ∪ V (Fm)

so we will generally restrict our attention to irreducible hypersurfaces,
and reducibility is evidently invariant under projective equivalence.

Example 3.1. By the fundamental theorem of algebra, every homoge-
neous polynomial in two variables is a product of linear polynomials:

F =
d∏

i=1

(µix1 − λix0); pi := (λi : µi)

and so the only irreducible hypersurfaces in CP1 are points, and a
general hypersurface is a finite union of points (but multiplicities would
be required to recover repeated terms in the factorization of F ).

Example 3.2. The degree one hypersurfaces are hyperplanes:

H = {(b0 : ... : bn) | L(b) = a0b0 + · · ·+ anbn = 0} ⊂ CPn

(i) All hyperplanes are irreducible and projectively equivalent.

(ii) An intersection of r hyperplanes is a projective linear subspace:

P(V ) ⊂ CPn

where V ⊂ Cn+1 is the kernel of the r × (n+ 1) matrix:

A =

 a10 · · · a1n
...

...
ar0 · · · arn


whose rows represent the r hyperplanes and P(V ) is the space of lines
(through the origin) in V . In particular, if A has full rank r, then
P(V ) = CPn−r (via a choice of basis of V ), in which case we say
that the hyperplanes intersect transversely. In particular, n transverse
hyperplanes intersect in a single point. Notice that to intersect non-
transversely, the coefficients of the hyperplanes must satisfy a collection
of polynomial relations.

Example 3.3. Writing a degree two homogeneous polynomial F as:

F =
n∑

i,j=0

aijxixj with aij = aji

has the result that we may interpret points of the quadric hypersurface:

Q = V (F ) = {(b0 : ... : bn) | bAbT = 0} ⊂ CPn

as vectors of length zero for the symmetric bilinear form A = (aij).
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The Gram-Schmidt process shows that every quadric hypersurface
in CPn is projectively equivalent to exactly one of the following:

Qi = V (x2
0 + ...+ x2

i ); i = 0, ..., n

with Q ∼ Qi ⇔ rk(A) = i+ 1 for the associated matrix A.

Exercise 3.1. (a) Explain the previous paragraph in detail.

(b) Show that Qi is irreducible for each i > 1 but Q1 is reducible.

(c) Find the maximal dimension of an “isotropic” projective linear
subspace P(V ) ⊂ Qi ⊂ CPn for each i ≥ 0.

We’ve already seen some interesting examples of intersections of quadrics.

(i) The rational normal curves are intersections of quadrics.

(ii) The elliptic curve EΛ embedded in CP3 by (1 : P : P ′ : P ′′) is an
intersection of two quadrics, but so is the twisted cubic union a line.

In fact, every projective variety is isomorphic to an intersection
of quadrics in some projective space. Even if we stick to transverse
intersections of quadrics, the list is very large. For example, curves of
arbitrarily high genus can occur as transverse intersections of quadrics.

When we pass to cubics and higher degree hypersurfaces in CPn,
(with one exception) then there are “moduli” to the hypersurfaces, i.e.
the dimension of the (projective) space of homogeneous polynomials
exceeds the dimension of the group of projective transformations:(

n+ d

d

)
= dim(C[x0, ..., xn]d) > (n+ 1)2 = dim(GL(n+ 1,C))

and so the projective equivalence classes vary in continuous families.

Remark. The exception is the cubic hypersurface in CP1, which consists
of three points (if the linear factors are distinct). By Exercise 1.1, these
are taken to {0, 1,∞} by a unique projective linear transformation.

Definition 3.3. (a) A hypersurface X = V (F ) is nonsingular at p ∈ X
if:

∇F (p) =

(
∂F

∂x0

(p), .....,
∂F

∂xn
(p)

)
6= (0, ..., 0)

and in that case,

TpX = V

(
∂F

∂x0

(p)x0 + · · ·+ ∂F

∂xn
(p)xn

)
⊂ CPn

is the embedded Zariski tangent space of X at p.

(b) X is nonsingular if it is nonsingular at every p ∈ X.
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Remarks. (i) Singularity is invariant under projective equivalence.

(ii) If p ∈ V (F )∩V (G), then V (FG) is singular at p (Leibniz rule!).

(iii) By Euler’s relation if F is homogeneous of degree d, then:
n∑

i=0

xi
∂F

∂xi
= d · F

It follows that the Zariski tangent space actually contains the point p,
and that the condition ∇F (p) = 0 for p ∈ CPn also implies that p ∈ X.
To see that it merits the title of “tangent space,” we need to pass to
affine coordinates.

Suppose p = (1 : 0 : · · · : 0) and p ∈ V (F ). Then:

V (F ) = 0 · xd0 + · · · and
∂F

∂x0

(p) = 0

and we may dehomogenize the polynomial F to get a Taylor polynomial:

f

(
x1

x0

, ...,
xn
x0

)
=
F (x0, ..., xn)

xd0
= a0

x1

x0

+ · · ·+ an
xn
x0

+ higher order

and then ai = ∂f
∂yi

(0, ..., 0) where yi = xi/x0 is the ith coordinate, but

we also have:

∂f

∂xi
=
∂f

∂yi
· 1

x0

=
∂F

∂xi
· 1

xd0
so

∂f

∂yi
=
∂F/∂xi

xd−1
0

is the dehomogenized partial derivative and the ordinary tangent space
at the origin agrees with the Zariski tangent space. We can bring any
point p to (1 : 0... : 0) by a projective transformation and conclude:

Implicit Function Theorem. If a hypersurface X ⊂ CPn is nonsin-
gular at p ∈ X, then X is a complex analytic manifold of (complex)
dimension n−1 near p ∈ X, i.e. it has n−1 local analytic coordinates.

We can similarly extract information from singular points.

Definition 3.4. (a) A point p ∈ X = V (F ) has multiplicity m if:

0 = F (p) = ... =
∂dF

∂xd00 · · · ∂xdnn
(p)

for all d < m, but some partial of order m does not vanish at p, and in
that case the embedded tangent cone to X at p ∈ X is:

CpX = V

 ∑
|m|=m

∂mF

∂xm0
0 · · · ∂xmn

n

(p) · xm0
0 · · ·xmn

n
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Exercise 3.2. (a) Check as above that the equation defining CpX
agrees with the lowest order term in the Taylor series for f(y1, ..., yn)
at (0, ..., 0) when p = (1 : 0 : ... : 0) and f = F/xd0.

(b) Find the singular points p ∈ Qi ⊂ CPn and their tangent cones.

(c) Use Euler’s equation to conclude that if all the partial derivatives
of F of order m − 1 vanish at p, then all the partial derivatives of all
smaller orders also vanish at p.

While we are on the subject of cones, let V ⊂ Cn+1 be a subspace of
dimension d, and consider:

Definition 3.5. The “rational” projection map:

πV : CPn −−− > CP(Cn+1/V ) = CPn−d

defined by:

π(l) =

{
l (mod V ) if l /∈ P(V )
undefined otherwise

(the last identification with CPn−d requires a choice of basis for Cn+1/V ).

Definition 3.6. A hypersurface X ⊂ CPn is a cone if:

X = π−1
V (Y ) ∪ P(V )

for some non-zero V ⊂ Cn+1 and hypersurface Y ⊂ CPn−d, and in that
case we say X = C(Y ) is the cone over Y with vertex P(V ).

Remark. Given V ⊂ Cn+1, choose projective coordinates so that P(V )
is given by equations x0 = ... = xn−d = 0. Then with respect to these
coordinates, X = V (F ) ⊂ CPn is a cone with vertex P(V ) if F is a
polynomial in only the variables x0, ..., xn−d.

Examples. (a) Each Qi ⊂ CPn is a cone over Qi ⊂ CPi, and the latter
is non-singular, as you discovered in Exercise 3.2 (b).

(b) The tangent cones CpX are cones with vertex p = P(V ).

We have been defining properties of a hypersurface X in terms of
the defining equation F . This is a sensible thing to do because of the
following special case of the Hilbert Nullstellensatz:

Theorem 3.1. Suppose X = V (F ) ⊂ CPn is a hypersurface.

(i) If F = 0, then X = CPn.

(ii) If F ∈ C− {0}, then X = ∅.
(iii) Otherwise, X ⊂ CPn is proper and non-empty, and projection

from any p 6∈ X is a mapping that is finite-to-one and onto:

πp : X → CPn−1
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(iv) A prime F ⊂ C[x0, ..., xn]d can be recovered (up to a nonzero
scalar multiple) from the hypersurface X = V (F ) that it defines.

Proof. (i) and (ii) are obvious.

Given F ∈ C[x0, ..., xn]d − {0}, then for points (a0, ..., an) ∈ CPn

with |a0| >> · · · >> |an| >> 0, the absolute value of the monomial in
F that is first lexicographically will dominate the others, and F (a) 6= 0
for all such points.

For the rest of (iii), take p 6∈ X and consider the projection map
πp : CPn −− > CPn−1. If pq − {p} is a fiber of this map, then after a
suitable projective transformation, pq is defined by x0 = ... = xn−2 = 0,
and p = (0 : ... : 0 : 1). Then the intersection X ∩ pq is the set of
zeroes of the homogeneous polynomial F |x0=...=xn−2=0, which is non-
zero (otherwise p ∈ X = V (F )), and in fact consists of exactly d points
(counting multiplicity) so it is finite-to-one and onto.

As for (iv), suppose F is prime and G ∈ C[x0, ..., xn]e − {0} satisfies
G(X) ≡ 0 for X = V (F ). We may assume that p = (1 : 0 : ... : 0) 6∈ X
with a suitable choice of coordinates, and that G(p) 6= 0, as well. Then:

f(y0, ..., yn−1) = ayd0 + ... and g(y0, ..., yn−1) = bye0 + ...

where f = F/xdn and g = G/xen. Regard these as polynomials:

f, g ∈ C(y1, ..., yn−1)[y0]

of degrees d and e respectively. Since f is prime, then in this Euclidean
domain, we can find polynomials h, k ∈ C(y1, ..., yn−1)[y0] so that:

hf − kg ∈ C(y1, ..., yn−1)

and we may additionally assume that deg(k) < d.

Clearing denominators of hf − kg as a polynomial in y1, ..., yn−1 and
then multiplying through by a suitable power of xn, we then have:

HF −KG ∈ C[x1, ..., xn]

In other words, V (HF −KG) = C(Y ) is a cone over a hypersurface
Y ⊂ CPn−1. But X ⊂ V (HF − KG), and H projects onto CPn−1

by (iii), so Y = CPn−1 and HF −KG = 0, also by (iii). But then F
divides KG and because the degree of x0 in K is less than d, it follows
that F divides G. Thus the ideal I(X) of homogeneous polynomials
G that vanish on X is the principal ideal 〈F 〉, and so F is recovered
(up to a scalar) from X.
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Note. The only property of C that we used here was the fact that it
is algebraically closed. This argument (and the Nullstellensatz itself)
only requires this property. Contrast this with the use of the Implicit
Function Theorem earlier to conclude that a hypersurface is a manifold
near each non-singular point p ∈ X.

Final Remark. The Theorem allows us to interpret irreducible hyper-
surfaces X = V (F ) as points of the projective space of polynomials:

X ↔ [F ] ∈ P(C[x0, ..., xn]d)

where [F ] is the equivalence class (line through the origin) of the poly-
nomial F . As we did with curves, we can extend this identification
to all points of the projective space by means of divisors, where an
effective divisor on CPn is a non-negative integer linear combination:

D =
m∑
i=1

diXi

of irreducible hypersurfaces Xi, with associated homogeneous poly-
nomials Fi, and the identification is:

D ↔ [
∏

F di
i ] ∈ P(C[x0, ..., xn]d)

with

d = deg(D) =
m∑
i=1

di deg(Fi)

as the natural generalization of the degree of a divisor on a curve.


