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2. Elliptic Curves. Let Λ ⊂ C be a lattice.

That is, Λ is a free abelian group of rank 2, embedded in C via:

ι : Z2 → C; ι(1, 0) = ω1, ι(0, 1) = ω2

for complex numbers ω1, ω2 that are not real multiples of each other.

The choice of generators for Λ is arbitrary, and will be taken up later.
The quotient:

EΛ = C/Λ
is a Riemann surface of genus one (a torus!) with an origin and the
(additive) structure of a group. This is an elliptic curve.

We can embed EΛ in the complex plane CP2 via the doubly periodic
meromorphic Weierstrass function:

P(z) =
1

z2
+
∑
ω∈Λ∗

(
1

(z − ω)2
− 1

ω2

)
(where Λ∗ = Λ− {(0, 0)}), and its derivative:

P ′(z) = −1

2

∑
ω∈Λ

1

(z − ω)3

Remark. The “correction terms” in the sum for P are necessary for
convergence of the sum, but they create another issue, addressed in:

Exercise 2.1. Show that P(z) is a meromorphic function on EΛ, i.e.
that the sum converges to a meromorphic function on C satisfying:

P(z + ω) = P(z) for all ω ∈ Λ

and that P(z) is even, with power series expansion:

P(z) = z−2 + az2 + bz4 + · · ·
for some uniquely determined constants a, b ∈ C.

Thus in particular, P determines a map:

P : EΛ → CP1

that is 2:1 (because of the double pole) at all but finitely many points,
at which it is 1:1 (with multiplicity two). One of these “branch” points
is the point at infinity, and it follows from topological considerations
that there are three others (because EΛ is a torus), but we may also
see this by analyzing power series expansions.
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Namely,
P ′(z) = −2z−3 + 2az + 4bz3 + ...

P ′(z)2 = 4z−6 − 8az−2 − 16b+ ...

P(z)3 = z−6 + 3az−2 + 3b+ ...

from which it follows (matching coefficients) that:

P ′(z)2 = 4P(z)3 − 20aP(z)− 28b+ f(z)

where f(z) is a holomorphic, doubly periodic function with f(0) = 0.
But this implies that f(z) = 0, by the maximum principle.

In other words, the image of:

(P ,P ′) : E∗Λ → C2

satisfies the polynomial relation:

y2
2 = 4y1 − 20ay1 − 28 = 4(y1 − λ1)(y1 − λ2)(y1 − λ3)

where λ1 + λ2 + λ3 = 0, λ1λ2 + λ2λ3 + λ1λ3 = −5a and λ1λ2λ3 = 7b.
But we can say more. Since P ′(z) is odd and periodic, it follows that:

P ′(z) = 0 for all two-torsion elements of EΛ

There are three of these (up to translation by Λ), namely,

ω1

2
,
ω2

2
,
ω1 + ω2

2
and it follows that:

{λ1, λ2, λ3} =

{
P
(ω1

2

)
,P
(ω2

2

)
,P
(
ω1 + ω2

2

)}
and that the two-torsion elements are the three other branch points of:

P : EΛ → CP1

We can extend the map (P ,P ′) to a map to CP2:

Φ = (1 : P(z) : P ′(z)) = (z3 : z3P(z) : z3P ′(z)) : EΛ → CP2

which is an embedding, with image cut out by the single cubic equation:

x0x
2
2 − 4(x1 − λ1x0)(x1 − λ2x0)(x1 − λ3x0) = 0

and Φ(0) = (0 : 0 : −2) = (0 : 0 : 1) for the “missing” origin.

Exercise 2.2. Consider the second derivative P ′′(z).

(a) Find a quadratic relation among P ′′,P and 1.

(b) Find a second quadratic relation among P ′′,P ′,P and 1.

(c) Show that (1 : P : P ′ : P ′′) embeds EΛ in CP3 as the set of zeroes
of two homogeneous quadratic polynomials in x0, x1, x2, x3.
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Suppose φ(z) is a meromorphic function on EΛ, i.e. a meromorphic
function on C that is doubly periodic with respect to Λ. Then:

(i) The divisor div(φ) on EΛ has degree zero.

(ii) The point of EΛ obtained by evaluating the divisor:

div(φ) =
∑

dipi

in the abelian group EΛ is the origin.

Condition (ii) may be viewed as an obstruction to solving:

div(φ) = D −D′

for effective divisorsD,D′ of the same degree on EΛ. IfD−D′ 6= 0 ∈ EΛ

when evaluated in the abelian group EΛ, then D and D′ are not linearly
equivalent divisors. The converse is true, and will be discussed later.

To see how (i) and (ii) may be proved analytically, given φ, then a
fundamental (parallelogram) domain for the action of Λ on C may be
chosen whose (oriented) boundary Γ meets no zeroes of poles of φ or φ′.
Then (i) and (ii) follow from the contour integrals (see, e.g. Ahlfors):

1

2πi

∫
Γ

φ′(ζ)

φ(ζ)
dζ = deg(div(φ)),

1

2πi

∫
Γ

ζ
φ′(ζ)

φ(ζ)
dζ = div(φ)

where the latter is evaluated on the elliptic curve. By periodicity, it
follows that the first integral is zero and that the second evaluates to
a point of Λ, hence to the origin in EΛ.

Property (i) is, as mentioned in §1, a general property of the degrees
of “principal” divisors, but property (ii) is particular to elliptic curves
(which are the only curves that are simultaneously groups). If we apply
it to rational functions of the form:

φ(z) = AP ′(z) +BP(z) + C

then we see that three points on the curve

y2
2 = 4(y1 − λ1)(y1 − λ2)(y1 − λ3)

sum to zero if and only if they are collinear! This is nearly enough
to completely determine the group law (only an origin is lacking). We
will see later how an arbitrary “irreducible” plane curve of degree three
is an abelian group with this collinearity property and a choice of an
inflection point for the origin.

Turning to an aribtrary (smooth, projective) algebraic curve C:
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Definition 2.1. To each effective divisor D on C, we associate:

L(D) := {φ ∈ K(C) |div(φ) +D ≥ 0} ∪ {0} ⊆ K(C)

which is a vector space with l(d) := dimC L(D)

Remark. L(D) is a vector space because the order of zero of:

φ+ ψ

is bounded below by the minimum of the orders of zeroes of φ and ψ.
For now we will see this using the analytic viewpoint, in which near
each point z0 ∈ C, there is an analytic local coordinate z and then:

φ(z) = cd(z − z0)d + ..., ψ(z) = c′e(z − z0)e + ...

and if we assume that d < e, then:

(φ+ ψ)(z) = cd(z − z0)d + ...

has order of vanishing d while if d = e, then:

(φ+ ψ)(z) = (cd + c′e)(z − z0)d + ...

vanishes to order d when cd 6= −c′e greater than d when cd = −c′e.
Proposition 2.1. For all effective divisors D on C:

l(D + p) ≤ l(D) + 1

Proof. Suppose φ, ψ ∈ L(D+p)−L(D) and D =
∑
dipi+dp. Then

φ(z) = c−d−1(z−z0)−d−1 + ... and ψ(z) = c′−d−1(z−z0)−d−1 + ... , where
z is a local coordinate on C with z(p) = z0, and c−d−1, c

′
−d−1 6= 0. Then:

(φ−
(
c−d−1/c

′
−d−1

)
ψ)(z) = a−d(z−z0)−d+ ... ∈ L(D). Since all pairs of

vectors φ, ψ ∈ L(D+ p)−L(D) have the property that φ−λψ ∈ L(D)
for some scalar λ, it follows that dim(L(D + p)/L(D)) ≤ 1. �

Corollary 2.2. l(D) ≤ deg(D) + 1 with equality if and only if either:

(i) D = 0, or else (ii) C = CP1.

Proof. Exercise 2.3.

Definition 2.2 The linear series of an effective divisor D′ on C is the
projective space:

|D′| = {effective divisors D on C | D ∼ D′}
and r(D′) = l(D′)− 1 is the dimension of the projective space |D′|.
Remark. If φ ∈ L(D′)∗, then div(φ) = D−D′ defines a divisorD ∈ |D′|,
and conversely, given D ∈ D′, then the rational function φ ∈ L(D)
satisfying div(φ) = D−D′ is determined by D up to a scalar multiple.
Thus |D′| is the space of lines through the origin in L(D′), which is the
projective space CPr(D′) (after a choice of basis of L(D′) is chosen).
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Example 2.1. One “seed” function determines all the vector spaces:

L(p) ⊂ L(2p) ⊂ L(3p) ⊂ .....

on the Riemann sphere CP1 and elliptic curves EΛ

In the case of CP1, we may assume p = 0 = (0 : 1), and then:

〈1, z−1, z−2, . . . , z−n〉 = L(np)

and stringing them together gives the map to the rational normal curve:

φn = (1 : z−1 : ... : z−n) = (zn : zn−1 : ... : 1) : CP1 → CPn

while in the case of EΛ, if we assume p = 0 is the origin, then:

〈1,P ,P ′, . . . ,P(n−2)〉 = L(np)

with a “gap” at n = 1, so that l(np) = n for all n ≥ 1.

Remark. We could have used a sequence of derivatives of z−1 instead
of powers. This would have only changed the functions by constant
multiples. The comparison between derivatives of P and powers of P
is the source of the polynomial relations defining the image of EΛ.

Definition 2.3. A curve C of genus g ≥ 2 is hyperelliptic if there is a
point p ∈ C and a non-constant function φ ∈ L(2p).

Remarks. We will see that there are hyperelliptic curves of all genera,
and that there are non-hyperelliptic curves of every genus g ≥ 3. We
will also see that

φ : C → CP1 has 2g + 2 branch points

if C has genus g and that

〈1, φ, φ2, ..., φn〉 = L(2np) for all n ≤ g

so there are “gaps” where the vector spaces L(0) ⊆ L(p) ⊆ · · · ⊆ L(mp)
don’t jump at odd values of m but there will be an extra rational
function ψ ∈ L((2g + 1)p so that:

〈1, φ, φ2, ..., φg, ψ〉 = L((2g + 1)p)

and the dimensions of L(mp) thereafter are strictly increasing, so there
are no subsequent gaps in the sequence.

Finally, consider the moduli of elliptic curves. It is immediate that:

EΛ
∼= EλΛ for λ ∈ C∗

as Riemann surfaces and so restricting to pairs (ω1, ω2) so that:

ω1 = 1 and Im(ω2) > 0

produces every elliptic curve (up to isomorphism). Let τ := ω2.
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The change of basis action of SL(2,Z) on 〈ω1, ω2〉 converts into an
action on bases 〈1, τ = ω1/ω2〉 by linear fraction transformations:[

a b
c d

]
(τ) =

aτ + b

cτ + d

that preserve the property that Im(τ) > 0, since:

Im

(
aτ + b

cτ + d

)
=

Im(τ)

||cτ + d||2

Notice that −1 ∈ SL(2,Z) has no effect, and it is the quotient of the τ -
upper-half plane by this action of PSL(2,Z) = SL(2,Z)/±1 that is the
moduli space of elliptic curves. Since the action of PSL(2,Z) preserves
the natural hyperbolic metric on the upper-half-plane, it follows that
the moduli space inherits the hyperbolic metric.

Moreover, the group PSL(2,Z) is generated by the two elements:

A =

[
0 1
−1 0

]
and B =

[
1 1
0 1

]
that act on τ via:

A(τ) = −1

τ
and B(τ) = τ + 1

yielding the familiar fundamental domain consisting of:

U =

{
z | |z| > 1, −1

2
< Re(z) ≤ 1

2
} ∪ {z | |z| = 1, 0 ≤ Re(z) ≤ 1

2

}
Exercise 2.4. (a) Show that the stabilizer subgroups of PSL(2,Z) are
trivial for all points of the fundamental domain except for

τ = i and τ = ω =
1

2
+

√
3

2
i

and determine the stabilizer subgroups for τ = i and τ = ω.

(b) Visualize the moduli space of elliptic curves with τ 6= i, ω. Show
that it is homeomorphic to the Riemann sphere minus three points.


