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6. Differentials and Genus. To each a non-singular curve:

C = V (F1) ∩ · · · ∩ V (Fm) ⊂ CPn

we associate the following information:

(i) The homogeneous prime ideal defined by C:

I(C) = {F ∈ C[x0, ..., xn]d | F (C) ≡ 0} ⊂ C[x0, ..., xn],

(ii) The homogeneous coordinate ring (graded integral domain):

RC = C[x0, ..., xn]/I(C),

(iii) The field of rational functions of C:

K(C) =

{
F

G
| F,G ∈ (RC)d, G 6= 0

}
,

(iv) The local rings of (germs of) regular functions at each p ∈ C:

OC,p =

{
φ ∈ K(C) | φ =

F

G
,G(p) 6= 0

}
⊂ K(C)

(v) The maximal ideals:

mC,p = {φ ∈ OC,p |φ(p) = 0} ⊂ OC,p

Remark. A rational function F/G on CPn restricts to a meromorphic
function on C which therefore has finitely many zeroes and poles. This
explains why I(C) is a prime ideal. As usual, if x0 6∈ I(C), then the
polynomials f(y1, ..., yn) that vanish on the affine curve C∩U0 are all of
the form F/xd0 for F ∈ I(C), and an affine (integral domain) coordinate
ring for C ∩ U0 results, with ordinary field of fractions equal to K(C).

Proposition 6.1. Each of the maximal ideals mC,p is principal.
In other words, the local rings OC,p are discrete valuation rings.

Proof. This is a generalization of Proposition 4.2(a). We may
choose coordinates so that p = (1 : 0 : ... : 0) and moreover so that
the nonsingular hypersurfaces Fi1 , ...., Fin−1 cutting out C near p (with
linearly independent Zariski tangent spaces) have affine equations:

fik(y1, ..., yn) = ykgk + hk

where gk are units in OCn,0 and hk are polynomials in all the variables
other than yk with leading term of degree ≥ 2. It follows by induction
that yn ∈ mC,p generates the ideal. �
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Remark. It follows from the proof that if y =
∑n

i=1 kiyi is not in the
linear span of the tangent hyperplanes to the equations cutting out the
affine curve C ∩ U0 near p = (0, ..., 0) ∈ Cn, then y generates mC,p.

We now revisit the divisor associated to φ ∈ K(C) in algebraic terms.
For each p ∈ C, let yp ∈ mp be a choice of generator. Then:

Definition 6.1. (a) For each φ ∈ K(C)− {0} and p ∈ C, we have:

φ = uydp for a unique d and unit u ∈ OC,p
and then d =: ordp(φ) is the order of vanishing (or pole) of φ at p.

(b) The divisor of zeroes (and poles) of φ ∈ K(C)− {0} is:

div(φ) =
∑
p∈C

ordp(φ) · p

(c) A divisor on C that is div(φ) of some φ is a principal divisor.

Proposition 6.2. Principal divisors all have degree zero.

There are several ways to see this.

Analytic Argument. Let p1, ..., pn be the points in the support of
div(φ), so φ is a meromorphic function on C with zeroes (or poles) of
order di at pi and no other zeroes or poles. Then 1

2πi
dφ
φ

is a meromorphic

(analytic) differential on C that, when integrated around small closed
loops about each pi computes the order of φ at pi as the residue of
the differential form. Integrating around all the closed loops gives the
degree of div(φ), which is zero because the union of the closed loops
bounds a complementary region in the curve where the differential has
no zeroes and no poles.

Field Theoretic Argument. The rational function φ defines a map
φ : C → CP1 that corresponds to the inclusion of fields C(φ) ⊂ K(C).
This is a finite field extension of degree d = [K(C) : K(φ)], and d is
both the degree of the divisor of zeroes of φ and the divisor of zeroes
of φ−1, which is the divisor of poles of φ.

Definition 6.2. Let φ ∈ OC,p. Then:

dφ := φ− φ(p) ∈ mp/m
2
p =: T∗pC(= C)

Since φ ∈ K(C) belongs to OC,p for all but finitely many p ∈ C, we
may a priori define dφ for all but finitely many points, though the values
of dφ land in the one-dimensional vector spaces mp/m

2
p that vary with

the point p. We can extend the definition “rationally” across all points
of C with the help of the following observations:
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Definition 6.3. A non-zero (rational) differential on C is:

ω = fdφ defined by ω(p) = f(p)dφ(p) ∈ mp/m
2
p

for some f, φ ∈ OC,p.
Proposition 6.3. Differentials satisfy the following, wherever defined:

(a) dc = 0 for constant functions c ∈ C.

(b) d(φ+ ψ) = dφ+ dψ

(c) d(φ · ψ) = φdψ + ψdφ

(e) d(f(φ)) = f ′(φ)dφ for f ∈ C(z), wherever both sides are defined.

Proof. Exercise!

The idea behind extending the differential is to use the properties in
Proposition 6.3 to push all the poles into the leading rational function
f in ω = fφ by choosing φ ∈ mp −m2

p when evaluating near p.

Example. (a) Consider the differential dy1 (for y1 = x1/x0) on CP1.

(i) dy1(c) = y1 − c 6= 0 ∈ mp/m
2
p for all c ∈ U0.

(ii) y1 = y−1
0 , so dy1 = −y−2

0 dy0 has a pole of order 2 at y0 = 0.

(b) A more “homogeneous” differential is:

dy1

y1

= −dy0

y0

which has poles of order one at 0 and ∞ (with opposite residues!)

Definition 6.4. The order of vanishing of ω = fdφ at p is obtained
from the local expansions in terms of the generator yp ∈ mp:

φ = uynp and f = vymp

to rewrite:
fdφ = vymp (u(nyn−1

p )dyp + ynpdu)

and conclude that y
(−m−n+1)
p ω(p) 6= 0. Hence we (well-)define:

ordp(ω) = m+ n− 1

unless n = 0 or f = 0, in which case ω = 0. And then:

deg(ω) =
∑
p∈C

ordp(ω)p

Proposition 6.4. Any two differentials ω1 = f1dφ1 and ω2 = f2dφ2

are related by multiplication by a single rational function:

ω1 = g · ω2
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Proof. φ1, φ2 ∈ K(C) are related by a polynomial: P (φ1, φ2) = 0
since the transcendence degree of K(C) over C is one. Then by implicit
differentiation, we get:

g1dφ1 = g2dφ2

for rational functions g1, g2, and the result follows. �

Corollary 6.1. The degree deg(div(ω)) is independent of ω.

Proof. Since all other differentials are of the form gω, we have:

deg(div(gω)) = deg(div(g)) + deg(div(ω)) = deg(div(ω))

by Proposition 6.2. �

Definition 6.5. (a) Ω(C) is the space of rational differentials, and:

Ω(C) = {gω | g ∈ K(C)} = K(C)

identifies Ω(C) with K(C) (given a choice of ω).

(b) The canonical linear series L(KC) is abstractly:

Ω[C] = {ω ∈ Ω(C) |div(ω) ≥ 0} ⊂ Ω(C)

which embeds as a linear series in K(C) given a choice of ω:

L(KC) = {g ∈ K(C) | div(gω) ≥ 0} ⊂ K(C)

as a finite-dimensional vector space with:

|KC | = {divisors of differentials in Ω[C]} ∼= P(L(KC))

It is customary to let KC stand for any of these effective divisors
that are divisors of zeroes of a regular differential in Ω[C].

Theorem 6.1. Let χ(C) be the topological Euler characteristic of C,
i.e. χ(C) = 2− 2g where g is the genus (number of holes) of C. Then:

deg(KC) = −χ(C) = 2g − 2

Proof. Let φ ∈ K(C)−C be a non-constant function, determining:

φ : C → CP1

Then div(dφ) can be seen in terms of the ramification of the map φ.
Namely, if p ∈ C has the property that φ − φ(p) ∈ me

p − me−1
p and

e > 1, then we say that p is a ramification point of order e of the map.
Similarly, φ−1 may define ramification via φ−1 − φ−1(p) ∈ me

p −me−1
p

and wherever φ(p) 6= 0,∞, they define the same notion of ramification:

φ− φ(p) = −(φ · φ(p))(φ−1 − φ−1(p))

so the ramification ep of the map φ at p is well-defined.
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We conclude the Theorem from the Rieman–Hurwitz formula:

div(dφ) = −2d+
∑
p∈C

(ep − 1)p

and the Euler characteristic formula:

χ(C) = 2d−
∑
p∈C

(ep − 1)p

where d is the degree of the divisor of zeroes (or poles) of φ.

Consider the points p ∈ C where φ is defined (i.e. p is not a pole).
Then ordp(dφ) = ep − 1 by definition since φ = uy

ep
p . Next, using

dφ = −φ−2dφ−1 we see that at a pole of φ (= zero of φ−1), we have:

ordp(dφ) = 2ordp(φ
−1) + ordp(φ

−1) = 2ordp(φ
−1) + (ep − 1)

and the Riemann-Hurwitz formula follows by summing.

Next, we turn to analysis and topology to get the second formula.
Near a point p ∈ C with ramification ep, we can choose an analytic
coordinate so that φ(z) = (z−p)ep . One may then triangulate CP1 with
vertices including all images of points of ramification ep > 1 in such a
way that it lifts to a triangulation of C. By Euler, any triangulation
of CP1 with v vertices, e edges and f faces satisfies:

v − e+ f = 2 = χ(CP1)

and the vertices, edges and faces of the lift to C satisfy:

vC = d · v −
∑
p∈C

(ep − 1), eC = d · e and fC = d · f

from which we obtain the second formula and the Theorem. �

Example. The projection of the affine elliptic curve:

Eaff = {(y1, y2) ∈ U0 | y2
2 = y1(y1 − 1)(y1 − λ)} ⊂ U0 = C2

onto the y1 axis ramifies at the three points of the y1-axis, so dy1 would
pick up zeroes at these points. But by implicit differentiation:

ω =
dy1

y2

=
dy2

2[y1(y1 − 1) + y1(y1 − λ) + (y1 − 1)(y1 − λ)]

and it follows that ω has no zeroes or poles on Eaff . But now:

E = V (x0x
2
2 − x1(x1 − x0)(x1 − λx0)) = Eaff ∪ (0 : 0 : 1) ⊂ CP2

and since ω has degree zero, it follows (and can be seen explicitly) that
ω is also regular at the additional point “at infinity.” If we recall that
Eaff is the image of the pair of meromorphic functions (P(z),P ′(z)) on
EΛ (from §2) then ω = d(P(z))/P ′(z) = dz as a differential on EΛ!


