
Algebraic Geometry (Math 6130)

Utah/Fall 2016.

3. The Category of Quasiprojective Varieties over a Field. We
need next to understand affine and projective varieties categorically
without referencing their particular realizations as subsets of kn or Pnk .
This is analogous to considering a finitely generated algebra without
specifying a choice of generators. We accomplish this by specifying a
topology and a sheaf of regular functions. Once this is done, we will
be able to define the category of quasi-projective varieties, which
contains both the projective and affine varieties as special cases.

Let X ⊂ kn be an affine variety with coordinate ring and field:

k[X] ⊂ k(X)

Definition 3.1. A subset Z ⊂ X is Zariski closed if:

Z = V (I) = {x ∈ X | f(x) = 0 for all f ∈ I}
for some ideal I ⊆ k[X].

Remark. It follows from the correspondences of §1 that Zariski closed
subsets of X are in bijection with radical ideals in k[X], via:

I(Z) = {f ∈ k[X] | f(x) = 0 for all x ∈ Z}
and that in particular the maximal ideals in k[X] are in bijection with
the points and prime ideals are in bijection with the varieties Y ⊂ X.

Proposition 3.1. The Zariski closed subsets Z ⊂ X form a topology.

Proof. A designation of closed sets of X forms a topology if:

(i) ∅ and X are closed sets.

(ii) The union of finitely many closed sets is closed, and

(iii) The intersection of an arbitrary collection of closed sets is closed.

We get (i) from the ideals k[X] and 〈0〉, respectively.

If Z1 = V (I1) and Z2 = V (I2), then Z1 ∪ Z2 = V (I1I2), giving (ii)
by induction, and if Zλ = V (Iλ);λ ∈ Λ for any index set Λ, then⋂
λ∈Λ Zλ = V (

∑
λ∈Λ Iλ). �

Warning. For any finite set of ideals,

V (I1 · · · Im) = V (I1) ∪ · · · ∪ V (Im) = V (I1 ∩ · · · ∩ Im)

but there is no product of infinitely many ideals and the equality on
the right generally fails for infinite sets of ideals.
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Definition 3.2. A topology on X is Noetherian if every chain:

X ⊃ Z1 ⊃ Z2 ⊃ · · ·
of closed sets is eventually stationary, i.e. Zn = Zn+1 = .. for some n.
In a Noetherian topology, a closed set Z ⊂ X is irreducible if:

Z1 ∪ Z2 = Z for closed subsets Z1, Z2 if and only if Z1 = Z or Z2 = Z

i.e. Z irreducible when every nonempty open subset U ⊂ Z is dense.

Proposition 3.2. The Zariski topology on an affine variety X ⊂ kn

is Noetherian and the irreducible closed subsets of X are the varieties.

Proof. The correspondence between closed sets and radical ideals:

Z ⊂ X ↔ I ⊂ k[X]

is inclusion reversing. Thus, a chain of closed sets corresponds to:

0 ⊂ I1 ⊂ I2 ⊂ · · · ; Ii = I(Zi)

and since k[x1, .., xn] is a Noetherian commutative ring, it follows that
k[X] is Noetherian, and, in particular, the ideal I = ∪Ii is finitely
generated, so the chain of ideals (hence also the chain of closed sets) is
eventually stationary.

Now suppose Y ⊂ X is a reducible closed set with Y = Y1 ∪ Y2 and
Y 6= Y1, Y2. Then there are points y1 ∈ Y1 − Y2 and y2 ∈ Y2 − Y1

with f1 ∈ I(Y2) and f2 ∈ I(Y1) satisfying f1(y1) 6= 0 and f2(y2) 6= 0,
so f1f2 ∈ I(Y ) and f1, f2 6∈ I(Y ). That is, I(Y ) is not a prime ideal.
Conversely, if I = I(Y ) is not prime, let f1f2 ∈ I(Y ) with f1, f2 6∈ I(Y ).
Then Y1 = V (〈I, f1〉) and Y2 = V (〈I, f2〉) exhibit Y as a reducible
closed set. �

Corollary 3.1. Every closed subset Z ⊂ X of an affine variety is a
union of finitely many irreducible distinct closed sets Z = Z1∪· · ·∪Zm,
which are the irreducible components of Z.

Proof. This is an exercise, true of any Noetherian topology.

Remark. This is a strange topology when compared, for example, to
metric space topologies. In particular, every nonempty open subset
U ⊂ X is dense, so any finite collection of nonempty open sets has
a nonempty intersection, and thus the Zariski topology on X fails,
spectacularly, to be Hausdorff. As a special case of Corollary 3.1.,
notice that any hypersurface V (f) ⊂ kn is a union of finitely many
irreucible hypersurfaces, corresponding to the irreducible factors of f .
Notice also the implication of the Corollary in commutative algebra:
Every radical ideal is a finite intersection of “minimal” prime ideals.
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The Zariski topology also leads to a (third!) notion of dimension:

Definition 3.3. The Krull dimension of an irreducible Noetherian
topological space X is the supremum of the lengths of all chains of
proper inclusions of irreducible closed subsets:

∅ ⊂ Z1 ⊂ Z2 ⊂ · · · ⊂ Zn ⊂ X

Example. A point has Krull dimension zero and the affine line k = k1

has Krull dimension one, but note that a Noetherian topological space
need not, in general, have a finite Krull dimension.

There is one other important feature of the Zariski topology on an
affine variety X, namely the existence of basic open sets

Uf := X − V (f) for f ∈ k[X]

Proposition 3.3. Every open subset U ⊂ X of an affine variety is a
union of finitely many basic open sets.

Proof. If U ⊂ X is an open subset and X − U = Z = V (I) with
I = 〈f1, ..., fm〉 then Z = V (f1)∩ · · · ∩ V (fm) and U = Uf1 ∪ · · · ∪Ufm .

Example. The open set U = k2−{0} is not a basic open set in k2. The
origin is not the zero locus of an irreducible polynomial f ∈ k[x, y] since
all non-trivial coordinate rings k[X] = k[x, y]/〈f〉 have transcendence
degree (at least) one over k.

Remark: In this Example it is crucial that k be algebraically closed.
The polynomial f(x, y) = x2 + y2 satisfies V (f) = {0} ∈ R2.

Next, we turn to the field of rational functions k(X).

Definition 3.4. The ring of germs of regular functions at x ∈ X is:

OX,x :=

{
φ ∈ k(X) | φ =

f

g
with g(x) 6= 0

}
⊂ k(X)

In other words, a rational function φ ∈ k(X) belongs to OX,x if
there is an expression for φ so that φ(x) well-defined. In commutative
algebra, this ring is obtained from the coordinate ring k[X] by the
process of localization. If P ⊂ k[X] is a prime ideal, then:

k[X]P :=

{
f

g
| g ∈ k[X]− P

}
⊂ k(X)

is the localization of k[X] at P . These rings are local, i.e.

mP = P · k[X]P =

{
f

g
| g ∈ k[X]− P, f ∈ P

}
⊂ k[X]P

is the unique maximal ideal in k[x]P .
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Note that if mx is the maximal ideal associated to x, then:

k[X]mx = OX,x
whereas the local rings k[X]P for sub-maximal prime ideals are com-
prised of rational functions that are defined at some point of the variety
Y = V (P ) ⊂ X associated to the prime ideal P . One of the properties
of Grothendieck’s schemes is the existence of a “generic” point attached
to each prime ideal, so that each such local ring is a ring of germs of
functions at a point.

Focusing on the functions instead of the points, we have:

Definition 3.5. The regular locus of φ ∈ k(X) is the open set:

dom(φ) := {x ∈ X | φ ∈ OX,x}
i.e. the set of points of X for which φ(x) is defined.

Remark. When the ring k[X] is a UFD, it is easy to find dom(φ).
Putting φ = f/g ∈ k(X) in lowest terms, then dom(φ) = Ug.

However, k[X] is frequently not a UFD. For example, in the ring:

k[X] = k[x0, x1, x2, x3]/〈x0x3 − x1x2〉 for X ⊂ k4

the rational function:

φ =
x0

x1

=
x2

x3

satisfies dom(φ) = Ux1 ∪ Ux3 which is not a basic open subset of X.

Here is another important consequence of the Nullstellensatz.

Proposition 3.4. Let Uh ⊂ X be a basic open subset. Then:

{φ | Uh ⊂ dom(φ)} =

{
f

hn
| f ∈ k[X], n ≥ 0

}
= k[X, h−1]

which is, in particular, a finitely generated k-algebra domain.

Proof. If φ = fh−n and x ∈ Uh, then evidently x ∈ dom(φ). In the
other direction, we need to be aware of the different expressions for φ.
Indeed, given φ ∈ k(X), consider the ideal of denominators of φ:

Iφ =

{
g | φ =

f

g

}
∪ {0} = {g ∈ k[X] |gφ ∈ k[X]}

If gφ = f ∈ k[X] and a ∈ k[X], then agφ = af ∈ k[X], and if
g1φ = f1 and g2φ = f2, then (g1 + g2)φ = f1 + f2. Thus Iφ is an
ideal, which in particular shows that dom(φ) = X − V (Iφ). But if
V (Iφ) ⊂ V (h), then hn ∈ Iφ for some n by the Nullstellensatz, so
hnφ ∈ k[X] and φ = f/hn for some f ∈ k[X]. �
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In particular, the coordinate ring itself can be recovered:

{φ ∈ k(X) | dom(φ) = X} = k[X]

We are ready to define the presheaf of regular functions on X.
This is a contravariant functor from the category of (Zariski) open
subsets of X to the category of k-algebra domains given by:

Definition 3.6. The presheaf OX of regular functions is given by:

OX(U) = {φ ∈ k(X) | U ⊆ dom(φ)} ⊂ k(X)

i.e. OX(U) is the ring of rational functions that are defined on U and

ρU2,U1 : OX(U2)→ OX(U1)

is the natural restriction map of functions whenever U1 ⊂ U2.

Note that each φ ∈ OX(U) is a continuous function φ : U → k for
the Zariski topologies on U and k. We call φ a section of OX over U .
The assignment of the ring of regular functions OX(U) to each open set
U ⊂ X clearly defines a functor, with ρU3,U1 = ρU2,U1 ◦ ρU3,U2 whenever
U1 ⊂ U2 ⊂ U3, but it is also a sheaf of k-valued continuous functions
on X, by virtue of satisfying two additional properties:

(i) (The only section that is locally zero is the zero section). I.e.

For all open sets U ⊂ X and open covers U =
⋃
λ∈Λ Uλ, if φ ∈ OX(U)

and if ρU,Uλ(φ) = 0 for every λ ∈ Λ, then φ = 0.

(ii) (Locally defined sections patch to define a global section). I.e.

If U =
⋃
λ∈Λ Uλ and sections φλ ∈ OX(Uλ) are given, satisfying

ρUλ,Uλ∩Uµ(φλ) = ρUµ,Uλ∩Uµ(φµ) for all pairs λ, µ ∈ Λ

then there is a (unique!) φ ∈ OX(U) with ρU,Uλ(φ) = φλ for all λ ∈ Λ.

In fact, stronger versions of (i) and (ii) hold because of the nature of
the Zariski topology and the irreducibility of X. For example, in (i), if
Uλ ⊂ U is a single nonempty open subset such that ρU,Uλ(φ) = 0, then
φ = 0 ∈ k(X), hence φ = 0 as a function on U . This is because Uλ ⊂ X
is dense and the locus of points satisfying φ(x) 6= 0 is open. Similarly,
if a single φ ∈ OX(Uλ) is given, with the property that U ⊂ dom(φ)
(which is certainly implied by (ii)), then φ ∈ OX(U).

Remark. (a) We will later define a presheaf of coherent OX-modules,
for which the sheaf properties will not be so trivial precisely because of
the absence of an analogue of the field k(X) containing all the sections.
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(b) In general, it is not easy to determine the ring OX(U), and also
somewhat irrelevant for most purposes. The important exception to
this rule are the basic open sets Uh. In that case, Proposition 3.4 gives:

OX(Uh) = k[X, h−1]

Sheaves of differentiable or analytic functions on a manifold allow
one to define differentiable or analytic maps of manifolds, and hence
the categories of differentiable or analytic manifolds. Similarly, our
definition of the sheaf of regular functions will enable us to define the
categories of quasi-affine and quasi-projective varieties.

Fix an algebraically closed field k with the Zariski topology.

Definition 3.7. Nk is the category of all pairs (X, CX) consisting of:

(i) An irreducible Noetherian topological space X and

(ii) A sheaf CX of k-algebras of continuous functions f : U → k
that always include the constant functions and for which the maps
ρU2,U1 : CX(U2)→ CX(U1) are the restriction of functions.

A morphism of pairs Φ : (X, CX)→ (Y, CY ) in Nk consists of

(i) A continuous map Φ : X → Y that also

(ii) Pulls back sections of the sheaf CY to sections of the sheaf CX :

Φ∗ : CY (U)→ CX(Φ−1(U)) under Φ∗(φ)(x) := φ(Φ(x))

for all open subsets U ⊂ Y .

This is larger than the category that we will eventually settle upon
as the category of varieties, but it serves as an ambient category in
which to locate affine and projective varieties, just as the category
of topological manifolds is an ambient category for the categories of
differentiable and analytic manifolds. To get used to the category Nk
consider two objects of Nk that are not varieties. Let X be a fixed
irreducible Noetherian topological space (other than a point).

(a) The sheaf k of constant fuctions on X is defined by:

k(U) = k for all nonempty open sets U ⊂ X

This is evidently a presheaf that also satisfies property (i) of a sheaf. It
satisfies property (ii) as well because all open subsets in X are dense!
(In other topologies, presheaves of constant functions are not sheaves!)
This is the bare minimum sheaf of k-algebras of continuous functions,
and indeed the identity map defines a morphism from any other pair:

id : (X, CX)→ (X,k)
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because constant functions pull back to constant functions, which are in
Ck(U) for any of the sheaves in Nk. But the identity is not a morphism
in the opposite direction if Ck 6= k.

(b) The sheaf F of all continuous functions f : U → k lies at the
other extreme. Because it contains all continuous functions,

id : (X,F)→ (X, CX)

is a morphism, regardless of the sheaf CX , while it is only a morphism
in the reverse direction if CX = F .

Affine Varieties. Each variety X ⊂ kn with the Zariski topology and
sheaf OX of regular functions is an object of Nk. An isomorphic object
of Nk may be obtained directly from k[X] itself, by setting:

X = {maximal ideals mx ∈ k[X]} with closed sets

Z = Z(I) = {x ∈ X | mx ⊃ I for some I ⊂ k[X]},

OX,x := k[X]mx ⊂ k(X) and OX(U) :=
⋂
x∈U

OX,x

for open sets U ⊂ X. Each φ ∈ OX(U) is a function from U to k via:

φ(mx) = φ ∈ k[X]mx/mxk[X]mx = k for each mx ∈ U

by passing to the quotient of the local ring OX,x by its maximal ideal.

Definition 3.8. An object (X, CX) of Nk is an affine variety if it is
isomorphic to (X,OX) for some variety X ⊂ kn. The full subcategory
of affine varieties (in other words, all morphisms in Nk permitted) will
be designated as Ak ⊂ Nk.

Quasi-Affine Varieties. Let (X, CX) be an object of Nk, and U ⊂ X
be an open subset with the induced topology. Then we may restrict
the sheaf CX to a sheaf CX |U on U by setting CX |U(V ) := CX(V ) for
all open sets V ⊂ U . Then (U, CX |U) is another object of category Nk
and by construction the inclusion map i : U ↪→ X defines a morphism.

Definition 3.9. An object (Y, CY ) of Nk is a quasi-affine variety if
it is isomorphic to (U,OX |U) for some open subset U ⊂ X of an affine
variety with the induced topology and restricted sheaf. This defines a
full subcategory Ak ⊂ QAk ⊂ Nk of quasi-affine varieties.

A Simple Example. Consider the quasi-affine variety k∗ ⊂ k with
Ok(k∗) = k[x, x−1]. Then the map Φ : k∗ → Y ⊂ k2; Φ(x) = (x, 1

x
) to

the hyperbola Y = V (xy− 1) is an isomorphism in QAk, with inverse
morphism Φ−1(x, y) = x. Thus k∗ ∼= Y is an affine variety!
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Theorem 3.1. The global section functor from the category Ak of
affine varieties to the category of finitely generated k-algebra domains:

Γ(X,OX) = OX(X) with

Γ
(

(X,OX)
Φ→ (Y,OY )

)
=
(

Γ(Y,OY )
Φ∗
→ Γ(X,OX)

)
is a contravariant equivalence of categories.

In other words, there is no qualitative difference between the cate-
gory of affine varieties and the category of finitely generated k-algebra
domains. We will prove this by finishing the construction of the inverse
functor that we unknowingly started to define earlier.

Proof. Consider the “maximum spectrum” object of Nk associated
to a finitely generated k-algebra domain A taking:

X := mspec(A) = {maximal ideals mx ∈ A}
with Zariski topology and sheaf OX as defined for k[X] above. If we
start with an affine variety (X,OX) for some X ⊂ kn, then

mspec(Γ(X,OX)) = mspec(k[X]) = (X,OX)

by Proposition 3.4. Conversely, if A = k[X] for some X ⊂ kn, then:

Γ(mspec(A)) = Γ(X,OX) = A

It remains to define mspec as a functor, i.e. to specify the morphism:
Φ = mspec(f : A→ B) associated to a k-algebra homomorphsm from
mspec(B) = (Y,OY ) to mspec(A) = (X,OX). As a map of sets,

Φ(my) = f−1(my) for maximal ideals my ⊂ B

and this is continuous since Φ(Z(I)) = Z(f−1(I)) for all ideals I ⊂ B.
Under this map, if h ∈ A, then

Φ−1(Uh) = {my ∈ B |f(h) 6∈ my} = Uf(h)

is non-empty if and only if h 6∈ ker(f) and in that case the pull-back
map of regular functions is the natural map of rings (Proposition 3.4):

f : A[h−1] = OX(Uh)→ B[f(h)−1] = OY (Φ−1(Uh))

extending f : A → B, from which we may conclude that Φ pulls back
regular functions to regular functions on all open subsets of Y . �

Corollary 3.2. Every basic open set Uh ⊂ X of an affine variety is
itself an affine variety.

Proof. By Proposition 3.4, we have Γ(Uh,OX |Uh) = k[X][h−1], and
the inclusion of k-algebras k[X] ⊂ k[X][h−1] corresponds to Uh ⊂ U
(with sheaves of regular functions) in the category Ak.
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This generalizes the simple example and has the following important:

Corollary 3.3. Every quasi-affine variety is covered by affine varieties.

Proof. The inclusions Uh ⊂ U of a basic open set in an arbitrary
open set of an affine variety X are morphisms in the category QAk for
the induced topologies and sheaves from X. But Uh, as an object of
QAk, is an affine variety by Corollary 3.2.

Important Example. The complement of the origin kn − {0} ⊂ kn

is not an affine variety when n ≥ 2. This follows from the observation:

Okn(kn − {0}) = k[x1, ..., xn], which is easily checked

(Contrast this with the simple example when n = 1).

Next, we turn to graded rings for an analogous construction of an
object of Nk intrinsically attached to a graded ring.

Let R• be a graded k-algebra, finitely generated in degree one, i.e.

R0 = k and R• is generated by R1

(as is the case for the homogeneous coordinate rings k[X]•). Then:

R+ :=
⊕
d>0

Rd

is the unique maximal homogeneous ideal in R ideals, and we define:

X = mproj(R•) := {maximal homogeneous prime ideals mx ⊂ R+}
i.e. mx is homogeneous, prime, and maximal among all such ideals
properly contained in R+. This has a Zariski topology:

Z(I) = {maximal ideals mx that contain a homogeneous I} . Let

k(X) =

{
F

G
| F,G ∈ Rd and G 6= 0

}
⊂ k(R)

and define the sheaf of regular functions on X = mproj(R•) via:

OX,x =

{
F

G
| F ∈ Rd, G ∈ Rd −mx

}
⊂ k(X) and

OX(U) =
⋂
x∈U

OX,x ⊂ k(X)

for all Zariski open sets U ⊂ X = mproj(R•).

Remark. Unlike the case with a k-algebra A without grading, there is
nearly a preferred choice of generators for the graded ring R•. A choice
of basis x0, ..., xn ∈ R1 for the vector space R1 determines a surjection:
S → R with homogeneous kernel P ⊂ S and two such are related by a
change of basis of R1.
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By identifying R• = S/P , and appealing to the correspondence there
between points and ideals, we see that the maximal prime homogeneous
ideals mx ∈ mproj(R•) correspond to hyperplanes H ⊂ R1 and that
conversely, given a hyperplane H ⊂ R1, then either

(i) H generates a maximal ideal mx ∈ mproj(R•), with R•/mx
∼= k[x]

or else (by the projective Nullstellensatz)

(ii) For some N > 0, the ideal 〈H〉 contains xN0 , ..., x
N
n , which implies

that Rd ⊂ 〈H〉 for all d > (n+ 1)(N − 1).

In particular, this tells us the sense in which an element φ ∈ OX(U)
is a (continuous) function from φ : U → k. Namely, if φ = F/G, then:

F,G are proportional in (R•/mx)d = k[x]d = k

and φ(x) is this proportion. Continuity follows from the observation
that each level set φ−1(c) ⊂ U of φ : U → k is a union of components
of the closed subset V (F − cG) ∩ U ⊂ U ⊂ X.

Once again, we have the (homogeneous) ideal of denominators:

Iφ := {G ∈ R• | Gφ ∈ R•}
generated by the homogeneous denominators that we use to conclude:

dom(φ) = X − V (Iφ) is an open subset of X

But now the analogue of Proposition 3.4 contains a surprise:

Proposition 3.5. If G ∈ Rd − {0}, let UG = X − V (G). Then:

OX(UG) = (R•[G
−1])0 ⊂ k(X)

In particular, taking G = 1, we have:

OX(X) = k

i.e. the only regular functions on X = mproj(R•) are the constants.

Proof. When G 6= 1, the proof is essentially same as Proposition
3.4, using the Projective Nullstellensatz in place of the Nullstellensatz.

When G = 1, there is wrinkle due to the wrinkle in the Projective
Nullstellensatz. If φ ∈ OX(X), we may only initially conclude that:

φ =
F0

xN0
=
F1

xN1
= · · · = Fn

xNn

for some F0, ..., Fn ∈ RN , from which it follows that Rd · φ ∈ Rd for all
d > (n+ 1)(N − 1). Now choose any G ∈ Rd for some such d. Then:

Gφn ∈ Rd for all n ≥ 0
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from which it follows that the sequence of modules:

R• ⊂ R• + φR• ⊂ R• + φR• + φ2R• ⊂ · · ·
are all contained in the single principal graded module G−1R• and
therefore since R• is Noetherian, the union of these modules is finitely
generated, and in particular for some m, there is an identity:

φm = fm−1φ
m−1 + · · ·+ f0 ∈ G−1R•

for (not necessarily graded) elements fi ∈ R•.
But φm ∈ (G−1R•)0, so restricting to the zero-graded part of G−1R•:

φm = cm−1φ
m−1 + · · ·+ c0 for constants ci ∈ k

and it follows immediately that φ itself is a constant. �

The other open sets UG 6= X have lots of regular functions. In fact:

Proposition 3.6. Each open subset UG ⊂ X = mproj(R•) for G 6∈ R0

is an affine variety (with the induced sheaf of regular functions).

Proof. You will do this in the Exercises.

Definition 3.10. (a) The category Pk of projective varieties is
the full subcategory of pairs (X,OX) ∈ Nk that are isomorphic to
mproj(R•) for some graded k-algebra domain R• that is generated by
R1 (a finite dimensional vector space over k) with R0 = k.

(b) The category QP k of quasi-projective varieties is the full
subcategory of pairs (U,OU) that are isomorphic to an open subset
U ⊂ X of a projective variety, with the induced sheaf.

Important Remark. The assignment R• 7→ mspec(R•) is pseudo-
functorial, in the sense that given f• : R• → Q•, we “define:”

Φ(my) = f−1(mx)

and note that, if this is well-defined (which, for example, is the case
when f• is surjective), then Φ is continuous and pulls back regular func-
tions to regular functions as in the case of mspec. However f−1(my)
is not, in general, a maximal ideal in R•!

Even in the simplest conceivable example, this fails. Namely, let:

f : k[x]→ R•; x 7→ x0 ∈ R1

Then mproj(k[x]) = p is a point, and the associated map Φ : X → p
should be the constant map. Indeed, for maximal ideals mx = 〈H〉
for which x0 6∈ H, we have f−1(mx) = 0 is the maximal ideal, but
the closed subset Z(x0) ⊂ X consists of maximal ideals whose inverse
image is the irrelevant ideal 〈x〉 ⊂ k[x], and Φ fails to be well-defined.
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We finish with a reality check, that will continue into the exercises.

Reality Check 1. What is a morphism Φ : X → kn?

If (X,OX) is an arbitrary element of Nk, then the pull-back map on
global sections is a homomorphism of k-algebras:

Φ∗ : k[y1, ..., yn]→ Γ(X,OX)

and the images fi = Φ∗(yi) of the coordinate functions are continuous
functions on X that recover Φ(x) = (f1, ..., fn). Thus, for example, if
X is a projective variety, then the fact that Γ(X,OX) = k means that
the only maps from X to kn are the constant maps. In particular, the
point is the only variety that is simultaneously affine and projective.

If X is an affine variety, then the converse is also true; any collec-
tion of n regular functions on X defines a map Φ = (f1, ..., fn) from X
to kn. This is because of the equivalence of categories. The map on
global sections k[y1, ..., yn]→ k[X], yi 7→ fi maps via the functor mspec
to the desired morphism Φ.

A morphism Φ : X → Y of affine varieties X ⊂ km and Y ⊂ kn is
determined by its global section map Φ∗ : k[Y ] → k[X], which can be
lifted (in many ways) to a map of polynomial rings F : k[y1, ..., yn] →
k[x1, ..., xn]. Applying the equivalence of categories, this means that Φ

can be realized as the restriction of a polynomial map Φ̃ : km → kn.

Reality Check 2. What is a morphism Φ : X → Pnk?

Assume that the open subset U0 = Pnk − V (x0) intersects the image
of Φ, changing coordinates on kn+1 if necessary. Then Φ restricts to:

Φ|W : W = Φ−1(U0)→ kn = U0

which is therefore given by coordinate functions:

ΦW (x) = (φ1(x), · · · , φn(x)) for φi = Φ|∗W (yi) ∈ OX(U) ⊂ k(Y )

and dehomogenizing, we get:

Φ|W (x) = (1 : φ1(x) : · · · : φn(x)) ∈ Pnk
Conversely, a morphism from an open subset of X to U0 = kn may

(or may not) extend to a morphism from X to Pnk . There is some issue
about uniqueness, which we will address in the next section.

This inspires the following:

Definition 3.11. A rational map Φ : X −− > Pnk is defined by:

Φ = (φ0 : · · · : φn) for φ0, ...., φn ∈ k(X) not all zero

and Φ is a regular map if Φ extends to a morphism on X.



13

Two Examples. (a) Consider the “projection” rational map:

Φ : P2
k −− > P1

k; Φ(x0 : x1 : x2) = (1 :
x1

x0

)

which is exhibited in this way as a rational map defined on the open
set U0 = P2

k − V (x0). But wherever they are both defined, we have:

(1 :
x1

x0

) = (
x0

x1

: 1)

and the latter is defined on the set U1 = P2
k − V (x1), so we may use

the latter expression to extend the definition of Φ to U0 ∪ U1. This
leaves only the point (0 : 0 : 1), and you should check that Φ cannot
be extended across this remaining point. Using projective coordinates,
we may realize Φ as the linear projection:

(x0 : x1 : x2) 7→ (x0 : x1)

though for now this is only a convenient notation.

(b) Now define Φ in the same way as a rational map:

Φ : X = V (x0x2 − x2
1)→ P1

k

This is a smooth conic that contains the point (0 : 0 : 1) across which
Φ could not be extended in (a). In this case, however,

x0

x1

=
x1

x2

∈ k(X)

and so there is a further extension:

(1 :
x1

x0

) = (
x0

x1

: 1) = (
x1

x2

: 1)

that enables the map Φ to be defined on all ofX. In fact, this projection
is an isomorphism, with inverse:

v2(y0 : y1) = (y2
0 : y0y1 : y2

1)

This discussion motivates the following:

Definition 3.12. Let X, Y be quasi-projective varieties. Then every
morphism Φ : U → Y from a non-empty open subset U ⊂ X to Y is
said to define a rational map Φ : X −− > Y .
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Exercises 3.

1. Prove that in a Noetherian topology, every closed set is a union of
finitely many (distinct) irreducible closed sets.

2. Krull’s Principal Ideal Theorem states that if

Y1 ∪ · · · ∪ Ym = V (f) ⊂ X

are the irreducible components of a (nonempty) hypersurface V (f) ⊂
X of an affine variety over an algebraically closed field, then for all i,

tr deg(k(Yi)/k) = tr deg(k(X)/k)− 1.

Use this to show that the two definitions of dimension (transcendence
degree of k(X) and Krull dimension of the space X) agree. Moreover,
use this to show that every chain of closed irreducible subsets of X can
be “lengthened” to a chain of length dim(X), so in particular every
maximal chain of irreducible subsets realizes the dimension of X.

3. Prove that the open set U ⊂ X = V (x0x3 − x1x2) ⊂ k4 defined by:

U = dom(φ) for φ =
x0

x1

=
x2

x3

is not a basic open subset of X.

4. Let the first n+ 1 coordinates of the d-uple embedding be:

νn,d(x0 : · · · : xn) = (xd0 : xd−1
0 x1 : · · · : xd−1

0 xn : · · · )
Show that the projection map onto the first n+ 1 coordinates:

Φ : P(n+dd )−1

k −− > Pnk
inverts the map νn,d, when restricted to the image of the d-uple em-
bedding. Conclude that the two projective varieties:

mproj(S•) and mproj(Sd•)

are isomorphic. Generalize the result to any graded ring R•.

5. Prove that a basic open subset UG ⊂ X of a projective variety
X = mproj(R•) is an affine variety. In fact, you need only to do this
for G = x0 ∈ R1 and then appeal to the isomorphism of Problem 4.

6. Show that the projection rational maps:

π : Pnk −− > Pmk ; π(x0 : · · · : xn) = (x0 : · · · : xm)

extend to a morphism defined on the open set U = Ux0∪· · ·∪Uxm ⊂ Pnk
but that they cannot be extended any further.

7. Let x ∈ Pnk . Show that the quasi-projective variety Y = Pnk −{x} is
neither an affine nor a projective variety if n ≥ 2.


