
Algebraic Geometry (Math 6130)

Utah/Fall 2016.

1. Introduction/Affine Varieties

Let k be a field, and consider the polynomial ring in n variables:

k[x1, ..., xn]

These are commutative algebras over k with unique factorization that
are Noetherian; each submodule N ⊂M of a finitely generated module
over k[x1, .., xn] is itself finitely generated. This is a consequence of the
Hilbert Basis Theorem. In particular, the ideals I ⊂ k[x1, ..., xn]
are each generated by finitely many polynomials.

Notation. When I is generated by polynomials f1, ..., fm, we write:

I = 〈f1, ..., fm〉
Another striking result of Hilbert characterizes the maximal ideals

of k[x1, ..., xn] when k is an algebraically closed field. Namely:

Hilbert’s Nullstellensatz: If k = k is an algebraically closed field,
then every maximal ideal ideal m ⊂ k[x1, ..., xn] is one of the following:

ma = 〈x1 − a1, ...., xn − an〉 for a = (a1, ..., an) ∈ kn

Remarks. (i) These maximal ideals are exactly the kernels of the maps:

eva : k[x1, ..., xn]→ k; eva(f) = f(a)

evaluating a polynomial at a ∈ kn, and the point is that when k fails to
be algebraically closed, there are more maximal ideals. For example:

(ii) The polynomial ring k[x] is a principal ideal domain, and the
maximal ideals are the principal ideals 〈f〉 for prime polynomials f(x).
When k is algebraically closed, the only prime polynomials are the
linear polynomials, and so every maximal ideal is of the form 〈x− a〉.
Corollary 1.1. If k is algebraically closed and I ⊂ k[x1, ..., xn] does
not contain 1, then the set of common zeroes of the polynomials in I:

V (I) = {a ∈ kn | f(a) = 0 for all f ∈ I} ⊂ kn

is nonempty, in bijection with the set of maximal ideals containing I.
Conversely, if f1, ..., fm ∈ k[x1, ..., xn] and V (〈f1, ..., fm〉) = ∅, then
there are polynomials g1, ..., gm ∈ k[x1, ..., xn] such that:

1 =
m∑
i=1

gifi

i.e. 1 ∈ I = 〈f1, ..., fm〉.
1
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Definition 1.1. A subset X ⊂ kn is algebraic if X = V (I) for some
ideal I ⊂ k[x1, ..., xn].

When k is not algebraically closed, there is no hope of recovering
the ideal I from the algebraic subset X = V (I) since, for example,
∅ = V (I) for many maximal ideals. However, when k = k, then:

Corollary 1.2. For any subset S ⊂ kn:

I(S) = {f ∈ k[x1, ..., xn] | f(a) = 0 for al s ∈ S}
of functions vanishing on S. Then for all ideals I ⊂ k[x1, ..., xn],

I(V (I)) =
√
I := {h ∈ k[x1, ..., xn]| hN ∈ I for some N > 0}

Proof. (Trick of Rabinowitz) Let I = 〈f1, .., fm〉 and h ∈ I(V (I)).
Consider the new ideal in the polynomial ring with one more variable:

J = 〈f1, ..., fm, hxn+1 − 1〉 ⊂ k[x1, ..., xn+1]

Then by construction, V (J) ⊂ kn+1 is empty, so:

1 =
m∑
i=1

gi(fi + g · (hxn+1 − 1)

for some polynomials g1, ..., gm, g ∈ k[x1, ..., xn+1] by Corollary 1.1.
Now formally substitute 1/h for xn+1 in the equation. This gives:

1 =
m∑
i=1

gi(x1, ..., xn,
1

h
)fi

and we may multiply through by hN for some N to clear denominators:

hN =
∑

hifi for hi ∈ k[x1, ..., xn]

to get hN ∈ I, as desired. This proves that I(V (I)) ⊆
√
I, but the

other direction is obvious. �

Definition 1.2. An ideal I ⊂ k[x1, ..., xn] is geometric if I = I(S)
for some subset S ⊂ k[x1, ..., xn].

Remark. A geometric ideal is clearly radical, i.e. it satisfies I =
√
I.

By Corollary 1.2, every radical ideal is geometric, with S = V (I).

The Nullstellensatz therefore gives a bijection (when k = k):

{algebraic subsets X ⊂ kn} ↔ {geometric ideals I ⊂ k[x1, ..., xn]}
X → I(X)

V (I)← I

that generalizes the bijection between points and maximal ideals.
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Remark. You should convince yourself of the two identities:

X = V (I(X)) and I = I(V (I))

for algebraic sets and geometric ideals, respectively.

You should also convince yourself that:

X ⊂ Y ⇔ I(Y ) ⊂ I(X) and I ⊂ J ⇔ V (J) ⊂ V (I)

i.e. the correspondence between algebraic sets and geometric ideals is
inclusion reversing.

Notice that prime ideals P ⊂ k[x1, ..., xn] are geometric ideals.

Definition 1.3. An algebraic subset X ⊂ kn is a variety if the
associated geometric ideal I(X) is prime.

Thus we have a correspondence between (always assuming k = k):

{maximal ideals m} ⊂ {prime ideals P} ⊂ {geometric ideals I}
and {points p} ⊂ {varieties V } ⊂ {algebraic sets X}

On the other hand, by the first isomorphism theorem for rings we
also have a correspondence between ideals and quotient rings, which
may be interpreted as rings of polynomial functions on sets X = V (I).
Thus:

X ↔ I(X)↔ k[X] := k[x1, ..., xn]/I(X)

and this coordinate ring k[X] of X is:

(i) A reduced k-algebra (no nilpotents) when X is an algebraic set.

(ii) A k-algebra domain when X is a variety.

(iii) k itself (the constant functions) when X is a point.

Conversely, any reduced (respectively integral domain, field) quotient
ring k[x1, ..., xn] → R of the polynomial ring is the coordinate ring of
an algebraic set (respectively variety, point) in kn.

Notice that when X is a variety, then:

k(X) := the field of fractions of the domain k[X]

may be defined. This is the field of rational functions of X.

Definition 1.4. The dimension of X is the transcendence degree:

td (k(X)/k)

of the field extension k(X) over k (when X is a variety).

Remark. We will later see that every algebraic set is a finite union of
varieties, which may have differing dimensions, giving such algebraic
sets an undefined dimension.
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Example 1.1.(Cubic Curves) Consider the following curves in k2:

(a) f(x, y) = y2 − x3; X = V (f) ⊂ k2 is the cuspidal cubic.

(b) g(x, y) = y2 − x2(x+ 1); Y = V (g) is the nodal cubic.

(c) hλ(x, y) = y2 − x(x+ 1)(x− λ), λ 6= 0,−1; Cλ = V (hλ).

Then:

(a) k[X] = k[x, y]/〈y2 − x3〉 ∼= k[t2, t3] and

(b) k[V (g)] = k[x, y]/〈y2 − x2(x− 1)〉 ∼= k[t(t2 − 1), t2 − 1]

so the fields of rational functions in (a) and (b) are isomorphic to k(t),
which is also the field of rational functions of the affine line k.

On the other hand, we will see that:

(i) The fields k(Cλ) are never isomorphic to k(t), and:

(ii) There is a finite group acting on the λ line with k(Cλ1)
∼= k(Cλ2)

if and only if λ1, λ2 belong to the same orbit. In particular, there are
infinitely many non-isomorphic fields k(Cλ) (since k = k is infinite).

A key property of Example (c) is:

(*) The cubic curves Cλ are “nonsingular:”

V (hλ) ∩ V (∇hλ) = V (hλ) ∩ V
(
∂hλ
∂x

)
∩ V

(
∂hλ
∂y

)
= ∅

By the implicit function theorem, if k = C, this implies that Cλ are
complex manifolds, whereas both X and Y fail to be manifolds at the
origin, where the gradient and the equation of the curve both vanish.

Remark. The cubic polynomial p(x, y) = y − x3 is both nonsingular
and produces a cubic curve Z with k(Z) ∼= k(x). There is, however, a
“hidden” cuspidal singularity of this curve that is only revealed when
it is completed to a curve in the projective plane. The curves Cλ, on
the other hand, will remain nonsingular when they are completed to
projective plane curves.

Theorem/Definition 1.5. Suppose X = V (〈f1, ..., fm〉) ⊂ kn is a
variety, and dim(X) = d. Then the rank of the n×m Jacobian matrix:

J(a) =

(
∂fi
∂xj

(a)

)
for each a ∈ X

is always at most n−d = the codimension of X in kn, and it is strictly
less than n− d on a (possibly empty) proper algebraic subset Z ⊂ X.

The points a ∈ X where the rank of the Jacobian matrix is exactly
equal to the codimension of X in kn are the nonsingular points of X.
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The next two Hilbert theorems relate to graded polynomial rings.
When we discuss graded polynomial rings, we will use variables x0, ..., xn
(for reasons that will become apparent later), and define:

S := k[x0, ..., xn] =
∞⊕
d=0

k[x0, ..., xn]d =:
∞⊕
d=0

Sd

decomposing the polynomial ring S = k[x0, ..., xn] as a direct sum of
subspaces Sd = k[x0, ..., xn]d of homogeneous polynomials of degree d.
This grading of S respects polynomial multiplication, in the sense that
multiplication induces bilinear maps for each pair of degrees:

µ : Sd1 × Sd2 7→ Sd1+d2

Definition 1.6. A module M over S = k[x0, ..., xn] is graded if:

M =
⊕
d∈Z

Md and µ : Sd ×Me →Md+e for all d ≥ 0 and e ∈ Z

An S-homomorphism φ : M → N of graded modules is graded if:

φ(Md) ⊂ Nd for all d ∈ Z

Remark. Any element m ∈ M is thus a finite sum of homogeneous
elements md ∈Md. In particular, if M is finitely generated and graded
as an S-module, then it is finitely generated by homogeneous elements.
Also, the kernel, image (by definition) and cokernel of a graded S-
homomorphism are graded S-modules.

Definition 1.7. For any e ∈ Z, the graded S-module:

S(e) =
∞⊕

d=−e

k[x0, ..., xn]d+e

is freely generated by 1 ∈ S(e)−e. A graded S-module is free if it is
isomorphic (as a graded module) to a direct sum of such modules.

Now suppose M is a finitely generated graded S-module. If:

md1 , ...,mdr ∈M are homogeneous generators

of degrees d1, ..., dr ∈ Z (with possible repetitions of degrees), then we
obtain a surjective graded homomorphism of S-modules:

φ :
r⊕
i=1

S(−di)→M ; φ(1, 0, ..., 0) = md1 , φ(0, 1, 0, .., 0) = md2 etc.
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We may repeat this with the kernel of φ, which is graded and finitely
generated, to get a surjective graded homomorphism:

φ1 :

r1⊕
i=1

S(−di,1)→ K0 := ker(φ)

and we may do this n times, at which point we have the:

Hilbert Syzygy Theorem (Graded Version). Let M be a finitely
generated graded S-module where S = k[x0, ..., xn]. Then the kernel
module Kn of any partial free resolution:

0→ Kn →
rn⊕
i=1

S(−di,n)
φn→ · · · →

r1⊕
i=1

S(−di,1)
φ1→

r0⊕
i=1

S(−di,0)
φ0→M → 0

is a free module, isomorphic to:
rn+1⊕
i=1

S(−di,n+1)

for unique values of di,n+1.

Example 1.2. The Koszul resolution of the graded quotient ring:

0→ 〈x0, ..., xn〉 → S → k → 0

of S by the unique maximal graded ideal has the following shape:

0→ S(−n− 1)→ · · · →
(n+1

m )⊕
i=1

S(−m)→ · · ·
n+1⊕
i=1

S(−1)→ S → k → 0

and it is not possible to “shorten” this free module resolution of k.

Remark. There is a canonical minimal free resolution of M , obtained
by choosing generators as efficiently as possible. For example, if Me = 0
for e < d and dim(Md) = n, then n (linearly independent) generators
should be chosen in degree d. The integers di,j in the minimal free
resolution of M are thus numerical invariants of M . The free modules
in the minimal free resolution are the syzygies of the module M .

Notice also that each graded homomorphism:

S(−e)→ S(−f)

is multiplication by a homogeneous polynomial F ∈ k[x0, ..., xn]e−f ,
hence any free resolution is accomplished with a series of matrices of
homogeneous polynomials.

More numerical invariants come from our final Hilbert theorem,
which is an immediate consequence of the Syzygy Theorem.
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Hilbert Polynomial Theorem. The dimensions dim(Md) of the
graded pieces of a finitely generated graded module over S = k[x0, ..., xn]
coincide with a polynomial HM(d) of degree ≤ n for all sufficiently
large values of d. This is the Hilbert polynomial of the module M ,
measuring the (eventual) growth the graded parts of M .

Proof. This is true of the twisted modules S(e), since:

dim(S[x0, ..., xn]d+e) =

(
d+ e+ n

n

)
for d ≥ −e− n

is a polynomial of degree n in d with leading term:

dn

n!
(if d < −e− n, however, the two sides do not agree!)

But now by the Syzygy Theorem, there is a finite resolution of M by
free modules Fi, each of which has polynomial growth (of degree n), and
since the dimension of Md is the alternating sum of the dimensions of
(Fi)d, it follows that the growth of the dimension of Md is polynomial,
of degree at most n. �

Remark. The S-module k = S/〈x0, .., xn〉 has the zero polynomial
as its Hilbert polynomial, so evidently the degree can be less than
n. In fact, we will associate a projective variety to a graded quotient
domain S → R, and the dimension of this variety will be defined to
be the degree of the Hilbert polynomial of the graded S-module R.
Reconciling this with Definition 1.3 for affine varieties will be done
with Krull’s Hauptidealsatz.

We have now seen (with Hilbert’s first two theorems) that algebraic
subsets X ⊂ kn are in bijection with geometric ideals in k[x1, ..., xn],
and that the latter can be used to define “local” geometric properties
of X, such as dimension and nonsingularity (at a point) purely in terms
of commutative algebra. With the second pair of Hilbert theorems, we
see that numerical invariants can be associated to finitely generated
modules over a graded polynomial ring S. These should be thought of
as being analogous to the dimensions of (singular) cohomology spaces
on a compact manifold, and in fact the cohomology of coherent sheaves,
which is the subject of this course, will be harnessed to do just that.
But first we have to see how “graded” rings and modules are seen as
completions of ordinary rings and modules with one fewer variable.
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Exercises. Here, k is an algebraically closed field.

1.1. (a) Show that the union of two varieties X, Y ⊂ kn is an algebraic
set, but that X ∪ Y is only a variety if X = X ∪ Y or Y = X ∪ Y .
Give examples showing that a union of infinitely many varieties need
not be an algebraic set.

(b) Show that the intersection of any collection of varieties in kn is
an algebraic set, and give an example of a pair of varieties X, Y ⊂ kn

whose intersection is not a variety.

(c) Find the appropriate commutative algebra result to allow you
to conclude that every algebraic set is the union of finitely many va-
rieties, and that the component varieties X1, ..., Xm of X are uniquely
determined provided that Xi 6⊂ Xj for any i 6= j.

1.2. Let S = {p, q, r} ⊂ k2 be three non-collinear points.

(a) Show that S = V (〈f, g〉) for some f, g ∈ k[x1, x2].

(b) Show that I(S) ⊂ k[x1, x2] is not generated by two polynomials.

(c) How do matters change if the points are collinear?

(d) Are there finite sets S ⊂ k2 such that I(S) require arbitrarily
many generators? Are there finite sets S ⊂ k2 that require arbitrarily
many polynomials to generate any ideal I with S = V (I)?

1.3. (a) Show that a conic C = V (q) ⊂ k2 for a “true” quadratic
polynomial q(x, y) ∈ k[x, y] is singular if and only if q factors as a
product of linearly independent linear factors. Give an example to
show that this is not true in more variables.

(b) Show that the plane curve V (yd − f(x)) ⊂ k2 is nonsingular for
d ≥ 2 if and only if f(x) ∈ k[x] has distinct roots.

1.4. Resolve the following homogenous ideals (as graded modules):

(a) The kernel of the map:

S = k[x0, x1, x2]→ k[s2, st, t2]; x0 7→ s2, etc

(b) The kernel of the map:

S = k[x0, x1, x2, x3]→ k[s3, s2t, st2, t3]; x0 7→ s3, etc

(c) The kernel of the map:

S = k[x0, x1, x2]→ k[s3, s2t− st2, t3]
(d) The kernel of the map:

S = k[x0, x1, x2, x3]→ k[s4, s3t, st3, t4]


