Algebraic Geometry I (Math 6130)
Utah/Fall 2020

5. MORE PROJECTIVE VARIETIES.

We prove that projective varieties are proper and also discuss various equivalent
formulations of the dimension of a variety, one of which is the degree of the Hilbert
polynomial, when X is projective.

Theorem 5.1. P} is a proper variety for all n.
Proof. Let X be a prevariety with affine open cover {Y;}. Then
Tx : X xXPp = X

is a closed map if each projection 7y, : Y; x P} — Y; is a closed map, and if Y C A}
is a closed subvariety, then 7y is a closed map if mam + AJ" x Pir — AP is closed.
So we are reduced to showing the projections:

m A7 x Py — A are closed maps for all m and n
In other words, we need to show that if Z C AJ* x P} is a closed subset, then:
X(I((2))) = 7(Z) € A}
since this is the defining property of a closed subset of A}".
Step 1. Consider the k[yi, ..., ym|-algebra:
Ae = kY1, ey Ym] @ Se

of polynomials in zg,...,z, (graded by degree) with coefficients in k[yi, ..., Ym]-
Then a homogeneous polynomial F' C Ay determines a well-defined subset:

X(F) = {((al, ...an), (bo Lt bn)) |F(a1, ...,an,b(], 7bn) = 0} C AZI X PZ
that is a closed subset of the product prevariety, since for each U; C P{,
X(E)YN (A x U;) = X(f) Cc A x U; :AZH”

for f = F/2¢ = F(y1, .., Yn, 2 “;) . Thus as in the case of P}, homogeneous
ideals I C A, determine closed subsets X (I) C A}* x P{. In fact, we claim that this
property characterizes closed subsets Z C A} x P}. Indeed, given Z, we define a
homogeneous ideal I with:

F
Li={FeAy| — € [(ZN (A" x U;)) for all i}
¢

(2

Then Z C X(I) since every such homogeneous polynomial F' vanishes of Z, by
construction. On the other hand, if p = ((a1,....,am),(bo : ... : by)) & Z but
p € A}" x U;, then there is an f € I(Z N (A}* x U;)) such that f(p) # 0, and:

zﬁl f = F € I, for all sufficiently large values of d
so p € X(F), and we conclude that Z = X (I) for this homogeneous ideal I.
Step 2. Notice that Iy = I(n(Z)), by definition. We claim that 7 (Z) = X (Ip).
To prove this, we will use the full homogeneous ideal I of Z and:

Nakayama’s Lemma. If A is a commutative ring with 1, M is a finitely generated
A-module, and I C A is an ideal such that IM = M then aM = 0 for some a € 1+1.
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Proof. Let my,...,m, generate M. By assumption, we can solve:

m; = Zbijmj for a matrix B = (b;;) of elements b;; € I
j=1

Then the matrix I,, — B annihilates all elements m = > a;m; € M and then by
Cramer’s rule, a = det(I,, — B) also annihilates M, and has the desired form. O

Proof of Step 2. Let p € 7(Z). Our goal is to find an f € I so that f(p) # 0.

Let m, C k[y1, ..., Ym] be the associated maximal ideal, and consider the pair of
homogeneous ideals I (from Step 1), and m, ® Se = mpA,. Since:

X(I)=Z and X(m, ® Se) =7 '(p)
are disjoint closed subsets of A7* x P!, we may conclude that:
(*) Id—l—mp-Ad = Ay
for sufficiently large values of d (as in Lemma 4.4). By Nakayama’s Lemma applied
to the finitely generated k[y1, ...., Ym]-module Aq/I; and ideal m,,, we conclude that
there is an f € 14+ my, so that f- Ag/I4 =0, ie. f-Aq C Ig. Thus:
fxf elgforalli=0,...n
and then it follows that f € Iy and f(p) # 0, as desired. O

Corollary 5.2. All projective varieties are proper.

Example. Consider the universal hypersurface degree d hypersurface in P} defined
by the bihomogeneous polynomial inserting variables in place of the coefficients:
F = Z ylxél x:{b
[I|=d
(7L+d

defining a closed (projective) subvariety X (F) C P, " )-1 x Py

This is the “universal family” of hypersurfaces of P} in the sense that:
7 eipree) ZX(ZPI:EI) C {p} x Py
I

is the hypersurface with coefficients pr. Recalling that (co : ... : ¢n) € X(>°; prar)
is a singular point if the gradient V(> prar)(co : ... : ¢n) = 0 we can define the
relative singular locus of the projection 7 as the closed subset:

oF OF
Z=X({gps e 5o

n+d

c P py

and then conclude that:
n+d 1
(*) The locus of non-singular hypersurfaces X (F) C P" is open in IED,(C +)

The process of deriving equations for 7(Z) C X from equations for Z C X x P}
is elimination theory, but merely just that the image is closed gives us information.
For example, the Fermat hypersurface:

X(xd+- +zd) cpy

is non-singular (if char(k) does not divide d), from which we conclude that the locus
of non-singular hypersurfaces is not just non-empty, but also open (and dense!).



Consider now a graded module M, over the polynomial ring S. That is,
M, =P My with Sq- M, C Maye
dez

The finitely generated graded modules over S, determine coherent sheaves on P}.
This will be another conversion of an algebraic object to a geometric structure
(coherent sheaves on P} include vector bundles on closed subvarieties X C Py).

The twisted modules:

Se(k) = B Sasn

d>—k
are freely generated by 1 € S(k)_g, and any homogeneous polynomial F' € Sy
determines a graded “multiplication by F” homomorphism:

s L Sk): G- FG
More generally, multiplication by F'is a graded homomorphism:
S ®s My = My 5 S(k) ®s My = M, (k)
for any graded module M,, and its twist My (k) = ®Myyk.

Theorem 5.3. If M, is a finitely generated graded module over S, = k[, ..., Z,],
then the Hilbert function

hM(d) = dimk Md

agrees with the Hilbert polynomial Hj;(d), which is a polynomial of degree < n,
for all sufficiently large values of d.

Proof. The polynomials H : Z — Z of degree < n have a Z-basis:

(- ()

n n—1

Hd) =Y a (?) then H(d+1)— H(d) = ;) -~ (f)

i=0
Consider the graded homomorphism -x,, with kernel and cokernel N and L:

0—=+N—-M2=%M1) =L -0

and if

Then N and L are graded k[zo, ..., Z,—1] modules, and:
ha(d+1) = har(d) = hp(d) — hn(d)

By induction, we may assume that hy(d) and hy(d) are polynomial functions of
degree < n — 1 for large values of d, and then:

har(d+1) — has(d) = nibi <n i 1)

i=0
for large d, and it follows that:

= d
has(d) = constant + Z bi—1 ( )
i

i=1
i.e. hps is a polynomial function of degree < n for large d. ([
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Examples. (a) The Hilbert polynomial of S(k) is:

d+n+k
HS(le):< n )

and the Hilbert function is:
0ford < —k

hs(d) =
Hgy(d) for d > —k —n

(b) Let F € S, and let A, = S/(F). From the short exact sequence:

0—>S(—k)f>S—>A.—>O
we see that Ha,(d) = Hs(d) — Hg(_p)(d), which is a polynomial of degree n — 1.

(c) If Ag = k[zo, ..., zn]e/P, then the Hilbert polynomial of X (P) C P} is Ha(d).
It is not an invariant of the isomorphism class of variety X itself. E.g. A, and A,
yield isomorphic projective varieties with Hilbert polynomials H4(d) and H 4(md).

Dimension. The dimension of a variety is its most basic invariant.
Definition 5.4. Let X be a variety over k. Then the dimension of X is:
dim(X) = tr degk(X)
where k(X)) is the field of rational functions on X.
Topology Detects Dimension. dim(X) is the length n of the longest chain:
XocX;Cc---CcX,=X
of closed irreducible subsets of X. Thus it is a topological invariant of X.

Proof. Given a chain as above, choose an open affine U C X with U N X, # 0.
Then Y; = X; NU are a chain of irreducible closed subsets of U, and Y; = Xj;.
Since k(X) = k(U), it suffices to prove this for X = U, an affine variety. If:

Z C X = maxspec(4)

is a closed subvariety, let f € A be a regular function with Z C X(f). Then Z is
contained in one of the irreducible components Y C X (f). On the other hand, by
the Krull Principal Ideal Theorem, tr deg, k(YY) = tr deg,k(X) — 1.

By induction, then, for any closed, irreducible Z C X, there is a chain:
Z=Y°cy"'c...cylcy’=X
of irreducible closed subsets and regular functions f; € k[Y*~!] such that:
Y* is a component of X(f;) C V"' and dim(Y?) = dim(X) —i

In other words the codimension cody (Y?) of Y in X is i and in particular,
every (zero-dimensional) point « € X has codimension equal to dim(X). 0

Ezample. (a) The dimension of X x Y is dim(X) + dim(Y'). If:
XocXjCc---cXp=XandYyCYiC---CY,,=Y
are maximal chains in X and Y, repsectively, then:
XoxYoCXoxV1 C---CXoxY,CXixY,C-- - CX, XY, =XxY

is a maximal chain of closed irreducible subsets of the product.
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(b) If X is affine and Z C X is a closed subvariety of codimension ¢, then the
regular functions fi, ...., f. in the proof above lift to regular functions in k[X] with
the property that Z C X is an irreducible component of X (f1, ..., f.). It is tempting
to conclude that if Z;, Zo have codimension cj,cs in X, then every component of
Z1 N Zs has codimension < ¢; + ¢o. But this is false:

(!) Consider the three-dimensional variety X = X (zoz3 — 2122) C A}. Then:
Z1 = X(xg,21) C X and Zy = X (29,23) C X
are two-dimensional closed subvarieties (planes) in X, and:
Z is a component of X (z¢) C X and Z, is a component of X (z3) C X

These two planes intersect only at the origin, which has codimension three in X
and in particular is not a component of:

X (x0,x3) C X, which consists of two lines!

Definition 5.5. If X is a variety and Z = X(f1,...,f.) C X is irreducible of
codimension ¢, then Z is a (set-theoretic) complete intersection in X.

Example. The planes Z;, Z> above are not complete intersections. There is no
single function g € k[X] such that Z; = X(g).

Proposition 5.6. If X is an affine variety, Z = X(fi,..., fo) C X is a complete
intersection, and Z’ C X is a closed subvariety of codimension ¢, then

codimy (X) < ¢+ ¢ for all irreducible components Y C Z N Z’

Proof. Asremarked above, we may conclude that Z’ is an irreducible component
of X(g1,...,9c) for regular functions g; € k[X]. Unlike example (!) we may now
also conclude from Krull’s Theorem that the irreducible components of Z N 7' =
X(f1,.., fo) N Z' are irreducible components of X (g1, ..., ger, f1, -, fo) C X, and
therefore have codimension < ¢+ ¢ in X. O

Corollary 5.7. If Z, Z' C A} are closed subvarieties of codimension ¢ and ¢/, then
every component of Z N Z’ has codimension < ¢+ ¢’ in A}.

Proof. We use the fact that:
ZNZ' =(ZxZ")YNACA} x A}
The codimension of Z x Z’ in A?" is c+¢/, and the codimension of A is n. Moreover,
A is a complete intersection:
A=XY1 — X1,y Yn — Tp)
so the Proposition applies to the components of ZNZ' = (Z x Z')NA. . (I

Corollary 5.8. Closed subvarieties Z;,Z> C P} have a non-empty intersection
when their codimensions satisfy ¢; + co < n.

Proof. The affine cones C(Z;),C(Z3) C AZ“ over Z; and Z; have the same
codimensions ¢; and ¢z in AP and 0 € C(Z;) N C(Z,). But by Corollary 5.7,
each component of C(Z1) N C(Z3) (which is necessarily itself an affine cone), has
codimension < ¢; + ¢y < nin AP, Thus 0 € C(Z;) N C(Z,) is contained in a
component of positive dimension, and Z; N Zy C P} is not empty. ([l

Exercise. The affine cone C(Z) over Z C P" has dimension dim(Z) + 1.
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Examples. (a) Curves in P? always intersect! (E.g. parallel lines meet at infinity).
When counted with correct multiplicities, the number of points of X (F) N X(G)
for homogeneous polynomials F' and G not sharing a common factor is:

deg(F) - deg(G)
This is Bézout’s Theorem. We will discuss it later.
(b) The non-empty intersection property of Corollary 5.8 is topological. Thus:
Pp*™ is not homeomorphic to P} x P}
because the latter fails Corollary 5.8. If n > m, then:
P" x {z1} NP" x {x2} = 0 for x1 # zo € PP
but codiimpn ypm (P X {z}) = m and 2m < n + m.

(c) If X is affine and 0 # f € k[X], then every irreducible component of X (f)
has codimension one. This is not true of two or more functions. All we can say is
that every component of X (fi, ..., fo) C X has codimension ¢ or less.

Hilbert Polynomials and Dimension. If X = maxproj(A,) is projective, then:
dim(X) is the degree of the Hilbert polynomial H 4, (d)
Proof. We will use the closed embedding:
X C P! with A, = S,/P
(¥) Projecting mp : P" — — > P"~! from a point p & X restricts to a morphism:
T X — Pt

that is finite onto its image. If » = dim(X), then projecting from n —r (successive)
points defines a morphism: 7 : X — P} which we can interpret as the projection
from a linear projective subspace A C P} of dimension n —r — 1 that does not
intersect X. With a change of basis (of 4;), we may assume that the projection is:

ma(ag: e ian) =(ag:...:ar:0:...:0)
and when restricted to any of the affine open subsets U;, i =0, ..., r,
I Td
k[—, .., —] C A,
[l’z’ 331] (x4)

is a polynomial subring over which A,,) is a finite module (Noether Normalization).
It follows that 7 is surjective and finite-to-one and that the Hilbert polynomial of:

A./(.Th ...,$d> = S./<P,.’L'17 ...,$d>

is a constant § > 0, equal to the dimension of the k-algebra:

X Td
A —_— e, —
(xo)/<x07 ’.130>
But it follows that: y
Hy,(d)=06- ( ) + lower order
r

and in particular that the Hilbert polynomial has degree r. ([l

Remark. The constant ¢ is the degree of the projective variety X C P™. Unlike the
dimension, this is not an isomorphism invariant of the variety X, since, for example,
the degree of P! is one, but the degree of the conic C' C P is two. Interestingly,
though, we will see that the constant term of the Hilbert polynomial is an invariant.



Assignment 5.
1. Prove that the the affine cone C(X) over a projective variety X C P™ satisfies:
dim(C(X)) = dim(X) +1

2. A subvariety X C P} is an ideal-theoretic complete intersection if the ideal:
I(X) = (F1, ..., F.) is generated by ¢ = codimpn (X) homogeneous polynomials.

(a) Find homogeneous polynomials F,G of degrees two and three so that the
twisted cubic C € P} is the set-theoretic complete intersection C' = X (F) N X (G).

(b) Find the leading coefficient of the Hilbert polynomial:
Hx(d) for X = X(Fy,....,F.) CP"
of an ideal-theoretic complete intersection of polynomials of degrees dy, ..., d..

(¢) Compute the degrees (and codimensions) of the rational normal curves in
P™. Conclude that they are never ideal-theoretic complete intersections.

3. (a) Prove that if f : P — P™ is a morphism then there are m + 1 homogeneous
polynomials Fy, ..., F},, € Sq for some d such that:

f(z) = (Fp(x) : ... : Fp(x))
“on the nose.” I.e. F;(z) # 0 for some i for each = € P™.
(b) Conclude that there are no morphisms f : P* — P™ when m < n.
4. A nonsingular curve is a variety C such that:
dim(C) =1 and O¢,y, is a discrete valuation ring
for all points p € C. Prove that every rational map:
f:C——>PpP"
is a morphism, defined at all points of C.
5. (a) Compute the dimension of the Grassmannian Gr(m,n) of m planes in k™.
The degeneracy loci:
D, ={A: k™ = k" | 1k(4) <r} C AJ™
are algebraic subsets. There is an “incidence correspondence” between D, and
Gr(m — r,m) defined by:
I'={(A,A) | ACker(A)} C A" x Gr(m —r,7)
This is an algebraic subset of the product,

(b) Analyze the fibers m, *(A) C I of the projection ma|; : I — Gr(m — r,7) and
use your analysis to argue that I is a variety and find its dimension.

(¢) Analyze the morphism 7y : I — D, and conclude that dim(7) = dim(D,).
Verify that the codimension of D, in A}™ is (n —r)(m —r).
6. Comment on the following. If X C P”, then any rational map:
fiX——>pPm
is given by Fy,...., Fy, € Sq/ Py (P is the homogeneous ideal of X). Reembedding
X in p("2)1 (via the d-uple embedding), the forms Fy, ..., F, become linear, and

f is the restriction of a projection (rational map) from (" )1 o P



