Algebraic Geometry I (Math 6130)
Utah/Fall 2020

1. ALGEBRAIC SETS

A commutative ring A with 1 is Noetherian if for every chain of ideals:
LcL,c---CA
there is an n such that I,, = I,11 = -+ = (Jg—; I (i-e. the chain stabilizes).
Lemma 1.1. A is Noetherian if and only if every ideal I C A is finitely generated.
Proof. Exercise.
e All fields k are Noetherian.
e Any PID (e.g. Z or k[z]) is Noetherian.

Lemma 1.2. If A is Noetherian and M is a finitely-generated A-module, then
every submodule N C M is also finitely generated.

Proof. If M is finitely generated, there is a surjection q : A™ — M, and if the
submodule ¢~1(N) C A" is a finitely generated A-module, then N is also finitely
generated (by the images of generators of ¢~ 1(N)). Thus it suffices to prove the
lemma for free modules A™. But this follows by induction on n via exact sequences:

0 A" 5 A" 5 A0 O

Hilbert Basis Theorem. If A is Noetherian, then A[z] is Noetherian.

Proof. Let J C Ax] be an ideal, and consider the ideals I C A of leading
coefficients of polynomials f(z) € J of degree d. That is, a € I, if and only if there
is a polynomial f(z) € J of the form az?+lower order “representing” a. The ideals
14 form an ascending chain that stabilizes at some I, since A is Noetherian. Each
of the ideals Iy, I, ...., I, is finitely generated by Lemma 1.1, and then J itself is
generated by any choice of n + 1 collections of polynomials in J of degrees 0, ...,n
that represent generators of each of the ideals Iy, ..., I,,. O

Corollary 1.3. The polynomial rings k[z1, ..., z,] are Noetherian.
Example. Let X C k™ be an arbitrary subset. Then:
I(X)=A{f€klzx1,..,xn]) | f(x) =0forall z € X}
is an ideal, hence finitely generated by Corollary 1.3.
Let X = {(0,0),(1,0),(0,1)} C k? and view k[z1, 2] as k[z1][xa]. Let J = I(X).
Then:
Iop= (z2 — 1), I = (z;) and I, = (1)
and the polynomials x% —x1,T122, x% —x9 € J generate J, as in the Basis Theorem.
Together with the definition of X (I) from §0, we have mappings:
X : {ideals I C k[z1,...,z,])} — {subsets X C k"} and
I : {subsets X C k"} — {ideals I C k[x1,...,2,])}
Definition 1.4. (a) X is algebraic if X = X (I) for some I C k[x1, ..., 2y].

(b) I is geometric if I = I(X) for some subset X C k™.
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Simple Observations. (i) If I C J, then X(I) D X(J).
(i) If X CY, then I(X) D I(Y).
(ifi) X € X(I(X)) and I C I(X(I)).

Proposition 1.5. The algebraic sets X(I) C k™ are the closed sets of a topology.
This is the Zariski Topology on k™..

Proof. We need to show that:

(i) 0 and k™ are closed sets.

(ii) If X and Y are closed sets, then X UY is a closed set.

(iii) If X, A € A is any collection of closed sets, then Ny X is a closed set.
These follow immediately from the corresponding properties of ideals.

(i) 0 = X ((1)) and k™ = X ({0)).

(i) If X = X(I) and Y = X(J), then X UY = X (I - .J).

(iii) If X\ = X(I)) for A € A, then NX) = X(O_ I). O

Remark. It’s often the open sets U = X¢ that are more natural to think about.
When we study schemes, we’ll see there are many closed subschemes of k™ with the
same underlying set X, but only one open subscheme with the underlying set U.

Example. (a) Points a € k™ are always closed, via the maximal ideals:
{a} =X{z1 — a1, ..., @, — ap))
so finite sets are also closed. These are the only closed subsets of k (other than k).

In k2, we also have the plane curves X = X(f(z1,72)) which are never finite sets
when k is algebraically closed.

(b) By the Noetherian property and observation (ii) above, any descending chain:
X12X202X02 -
of closed sets of k™ eventually stabilizes. Complementarily, any ascending chain:
Uy CU,CUsC---
of open subsets of k™ eventually stabilizes.
Suppose now that P C k[zy,...,x,] is a prime ideal and let:
e X =X(P)Ck"
o k[X] = k[z1,....,x,]/ P (the integral domain of regular functions on X)
e k(X)) = field of fractions of k[X] (the field of rational functions on X)
Let d be the transcendence degree of the field extension k& C k(X). Then:

Noether Normalization. There are algebraically independent regular functions
Y1y .- Yd € k[X] such that k[X] is finitely generated as a k[yi, ..., yq]-module.

Proof. We will prove this under the (unnecessary) assumption that k is infinite.
With this assumption, we can in fact choose:

n
Yy = Zai,jxj fori=1,..,dand a;; € k
j=1

to be linear combinations of the images of the coordinate functions x; in k[X].
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If n = d, then P = 0 (otherwise k(X) would have transcendence degree < d).
Otherwise, n < d and 1, ..., x, € k[X] satisfy a relation f(z1,...,z,) = 0 for some
polynomial f € P of degree m > 0. If

f = ax* + {lower order in x,}

m—1

for some non-zero constant a € k, then k[X] is generated by 1,x,, ...,z

module over the integral domain k[z1, ..., xn—1]/P N Ek[x1, ..., Tp_1].

as a

In general f will not have this form, but we can change variables to put it in
this form as follows. Let y; = x; + a;x,, for i = 1,...,n — 1. Then as a function of
Y15 Y2y ooy Yn—1, T, We have

f=glar,...;an_1)z," + {lower order in z,}
where ¢ is a non-zero polynomial in the a;. Because k is infinite, we can choose
the constants aq, ..., a,—1 so that g(ai,...,a,—1) # 0 and then in terms of the new
coordinates yi, ..., Yn—1, Tn, the relation f does have the desired form, and so k[X]
is finitely generated as a module over k[Y] = k[y1, ..., yn—1]/P N K[y1, ..., Yn—1] from
which it follows that k(Y") is a finite field extension of k(Y"), so they have the same
transcendence degree over k, and then we can proceed by induction on n. ([

Example. Consider the prime ideal P = (zy — 1) C k[z,y]. Then:
e X = X (P) is the hyperbola {(t,t71) | t € k*}.
e k[z,r71] is not finitely generated as a k[x]-module, but
e k[z,r71] is generated by 1 and z as a k[x + x~!]-module.

Hilbert Nullstellensatz: If k is infinite and m C k[z1, ..., z,] is a maximal ideal,
then k C K = k[x1, ..., z»]/m is a finite field extension.

Proof. If not, then £ C K is a field extension of transcendence degree d > 0,
and then by by Noether Normalization, we have:

k C Ekly1,...,yq) C K

where K is a finitely generated k[yi, ...., yq]-module. But this is impossible when
K is a field. For example, by Lemma 1.2 and 1.3, k[yl,yl_l, ..sYa] C K would be a
finitely generated k[yi, ..., yg]-module, which it isn’t. O

Corollary 1.6. If k =k, then m,,a € k™ are the maximal ideals in k[zy, ..., 7,].
Proof. Let m C k[z1,...,x,] be a maximal ideal. Then by the Nullstellensatz,
k Cklxy,...,xn] = klz1,..yxn]/m=K
is a finite field extension of k, hence equal to k. Thus, m is the kernel of the map:
r—aeK=FkKi=1...,n
i.e. m is the maximal ideal m, = (1 — a1, ..., Ty, — ap). |
Corollary 1.7. If X(I) =0 and k =k, then 1 € I.

Proof. If X(I) = (), then by Corollary 1.6, I is contained in no maximal ideal,
hence 1 € I, so if I = (f1, ..., fm), there are polynomials g1, ..., g, so that:

m
1= Z 9ifi
im1

(though finding the g; can be challenging).
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Definition 1.8. If [ C A is an ideal, then the radical of I is the ideal:
rad(l) ={f € A| f* €I for some n > 0}
Note that if I C k[z1,...,2,], then T Crad(l) C I(X(I)).
The following Corollary characterizes geometric ideals in k[zy, ..., z,,] when k = k.
Corollary 1.9. If k = k, then I(X(I)) = rad(I).
Proof. Let I = (f1,.., fm) and suppose f € I(X(I)) and consider the ideal:
J = (f1,es fon, fng1 — 1) Cklzy, .., Tpyp]
Then by construction, X (J) =0, so 1 € J by Corollary 1.7 and
1= gifi+g- (frns1—1)
i=1

for some g1, ..., gm, g € k[x1, ..., T 11]. Now formally substitute f~* for 2,,4 1. Then:
m
1= Zgi(l‘l, T, [
i=1

and multiplying through by fV for large enough N gives:

N = Zhifi eI for hy = fNgi(xr, ..., xp, 1) € k21, ..., 2]
Thus rad(I) C I(X(1)). O
Definition 1.10. An ideal I is radical if rad(I) = I.
Example. If [ is any ideal, then rad(rad(I)) = rad(I), so rad(I) is radical.
Corollary 1.11. If k = k, geometric ideals are the same as radical ideals.

Proof. Clearly every ideal of the form I(X) for any X C k™ is a radical ideal.
On the the other hand, if I is radical, then I = I(X(I)), so I is geometric. O

Notice also that if T # J are radical ideals, then X (I) # X (J). So:
X : {radical ideals I C k[z1,...,z,]} — {algebraic (closed) subsets X C k"}
is a bijection, with inverse I (this follows from X (I(X (1)) = X (rad(I)) = X (I)).

Note that a prime ideal P is also a radical ideal, so I(X(P)) = P (when k = k).
The closed sets X (P) corresponding to prime ideals are “irreducible.”

Definition 1.12. A closed set X C k™ in the Zariski topology is reducible if:
X=X1UX,

for two nonempty closed subsets X; C X and X5 C X (properly contained in X).
If no such pair of closed subsets exists, then X is irreducible.

Announcement. Unless otherwise indicated, we will assume k = k from now on.
Proposition 1.13. (a) If P C k[x1, ..., T, is a prime ideal then X (P) is irreducible.
(b) If X C k™ is an irreducible closed set, then I(X) is prime.

(¢) Every closed set X C k™ is a union of finitely many irreducible closed sets,
and the minimal such union: X = X; U---U X, (with X; ¢ X — X;) is uniquely
determined, up to permuting the irreducible components X;, ..., X,,.
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Proof. (a) Let I be a radical ideal. If X(I) is reducible, let X = X; U X5 as in
Definition 1.12 and choose 27 € X — X5 and 2 € X — X;. Since X; = X(I(X;)),
it follows that there are f, g € k[z1,...,x,] such that f(x1) # 0 but f|x, = 0 and
g(x2) #0 but g|x, =0. Then fg € I, but f,g & I. So I is not prime.

(b) Conversely, if 1(X) is not prime, then there are f,g & I(X) with fg € I(X).
Then X ((I(X), f)) = X2 and X ((I(X), g)) = X1 satisfy Definition 1.12.

(c) Either X is irreducible and there is nothing to prove, or else:
X=XUXy

as in Definition 1.12. If X is not a union of finitely many irreducible closed subsets
as in (c), then either X; or X5 is also not a union of finitely many irreducible closed
subsets and in particular, X; is reducible for ¢ = 1 or 2, and so X; = X; 1 U X; 2.
Continuing, there is a decreasing chain of closed subsets X D X;, D X;,,, D ---
that does not stabilize, violating the Noetherian property.

The uniqueness of irreducible components is left as an exercise. (Il
Example. k[z1,...,x,] is a unique factorization domain (UFD). If:

f=ftt

is a prime factorization of f € k[x1,...,x,] with distinct irreducible polynomials
f1y ooy fm, then X(f) = X(f1) U--- U X(f,) and the irreducible hypersurfaces
X(f;) are the irreduciuble components of X (f).

Assignment 1. Assume k = k (as we announced earlier).

1. Prove Lemma 1.1.

2. (a) If X C k™ is an algebraic set, show that X(I(X)) = X.
(b) If I C k[z1,...,w,] is a geometric ideal, show that I(X(I)) = I.
(c) Do we need the assumption k = k for (a) and (b) to be true?

3. Prove that the components of a reducible algebraic set are uniquely determined.

4. Show that for each n > 0 there are ideals in k[xy, z3] that require n generators.
(This is in contrast with k[z1], which is a PID).

5. Find embeddings of each of the following commutative rings in the ring k[t] and
conclude that the corresponding plane curves X ({f)) are irreducible.

(a) klz1, 2]/ (23 — a7)
(b) kla1, 2]/ (a3 — 2i(z1 — 1))
6. Find three prime quadratic polynomials ¢, g2, g3 € k[z1, 22, x3] such that:
X(q1) N X(q2) N X(gs) ={(t.0*,°) [t €k} C
(this is the twisted cubic curve). What are the pairwise intersections X (¢;) VX (g;)?

7. Prove that the intersection of any two non-empty open subsets of k™ is non-
empty. Conclude that the Zariski topology is not Hausdorff.



