
Math 6080. Fall 2014. Polynomials.

3. The Projective Plane.

“Boss, boss, ze plane, ze plane!”

–Tattoo, Fantasy Island

The projective plane completes the plane with points at infinity.
Projective transformations of the projective plane contain the standard
transformations of the plane (reflections, translations, rotations, etc)
and include new and mysterious transformations that, for example, can
change ellipses to hyperbolas or parabolas. Projective transformations
also allow us to merge the study of conics with linear algebra by viewing
a quadratic polynomial as a symmetric matrix.

As a warm-up, consider the projective line.

Definition. The projective line RP1 is the set of all lines through
the origin in the plane R2.

First Remark. Every line through the origin intersects the unit sphere
in exactly two points. The unit sphere in the plane is more commonly
referred to as the unit circle:

S1 := {(x, y) |x2 + y2 = 1}
The fact that every line meets the circle in two (antipodal) points

means that there is a two-to-one surjective mapping:

a : S1 → RP1

The topological manifold RP1 is easy to describe. It is also a circle. In
fact, the circle is the only connected, one-dimensional closed manifold.
In this case, walking along RP1 is just the same as walking along S1,
except that you return to the start after π radians, rather than after
2π radians.

Second Remark: Ratios give coordinates for the elements of RP1:

(x : y) 6= (0 : 0) with (x : y) = (αx : αy) for all α 6= 0

Ratios behave as fractions, except that the ratio (x : 0) is allowed,
while fractions do not allow 0 to be in the denominator.

Only the “ratio” (0 : 0) is not permitted.
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The Line Plus a Point at Infinity. The ratios (x : 1) can be thought
of as a point of the line y = 1. In fact, all but one of the ratios can
be put in this form uniquely via:

(x : y) =

(
x

y
: 1

)
which means that we may think of RP1 as being the points of the
line y = 1 with an added point at infinity, which corresponds to the
line y = 0, which, in ratio coordinates, is (x : 0) (the non-fraction).
Notice that approaching infinity either with large numbers or with
small numbers has the same limit. In other words, this point at
infinity functions as both∞ and −∞ in the sense of calculus. Walking
beyond infinity in the projective line brings you back to the other side!

Projective Transformations of RP1 are 2× 2 invertible matrices:

A : RP1 → RP1; A

([
x
y

])
=

[
a b
c d

]
·
[
x
y

]
=

[
ax+ by
cx+ dy

]
This is well-defined because matrix multiplication takes lines through

the origin to lines through the origin. It is different from a linear
transformation of the plane because we are thinking of our vectors as
being ratios, so scaling just acts as the identity:[

α 0
0 α

] [
x
y

]
=

[
αx
αy

]
=

[
x
y

]
Recall that an affine linear transformation of the real line is:

f(x) = ax+ b

where b is the translation, and a is the scaling factor. Consider the
projective transformation of the projective line:

A

([
x
y

])
=

[
a b
0 1

] [
x
y

]
For points of R (with coordinates (x : 1)) this is the same as F :

A

([
x
1

])
=

[
a b
0 1

] [
x
1

]
=

[
ax+ b

1

]
and the additional point at infinity is fixed:

A

([
1
0

])
=

[
a b
0 1

] [
1
0

]
=

[
a
0

]
=

[
1
0

]
In other words, the affine transformations of the line are examples

of projective transformations of the projective line.
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For Discussion.
(a) Suppose x1 ∈ R. Show that there is a unique translation of the

number-line (i.e. a self-mapping of the form f(x) = x + b) that takes
x1 to the origin 0 ∈ R. What is it?

(b) Suppose x1, x2 ∈ R are two distinct numbers. Show that there is a
unique affine transformation (i.e. a slef-map of the form f(x) = ax+b)
taking x1 to 0 and x1 to 1. What is it?

(c) Suppose x1, x2, x3 ∈ R are three distinct points. Show that there
is a unique projective transformation of RP1 taking (x1 : 1) to (0 : 1),
(x2 : 1) to (1 : 1) and (x3 : 1) to the infinite point (1 : 0). What is it?

Definition. The projective plane RP2 is the set of lines through the
origin in R3.

Each such line meets the unit sphere:

S2 = {(x, y, z) |x2 + y2 + z2 = 1}
in two (antipodal) points, so there is a two-to-one surjective mapping:

a : S2 → RP2

Ratios. Elements of the projective plane are ratios of triples:

(x : y : z) 6= (0 : 0 : 0) with (x : y : z) = (αx : αy : αz) for α 6= 0

We can identify most of the elements of RP2 with points of the plane
z = 1 via:

(x : y : z) =
(x
z

:
y

z
: 1

)
and the rest of the elements represent lines in the plane z = 0, which
is the projective line RP1 (with an added irrelevant 0) (x : y : 0).

In other words, the projective plane:

RP2 = R2 ∪ RP1

is the ordinary plane, plus a projective line of “points at infinity.”

Example: (a) Each line y = mx + b of points in the plane R2 meets
the points at infinity in a single point:

(x : mx : 0) = (1 : m : 0)

This is because the projective coordinates of the “finite” points of the
line (with the exception of the y-intercept) are:

(x : mx+ b : 1) = (1 : m+ b/x : 1/x)

and the limit as x → ±∞ is the point (1 : m : 0). This means that
following the line in one direction to infinity will “flip” to the opposite
end of the line. The closure of this line is a copy of RP1!
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Remark. The point at infinity only depends upon the slope of the line.
Thus any two lines with the same slope, i.e. parallel lines, will meet
at the point (1 : m : 0) at infinity. And two lines with different slopes,
which meet inside the plane R2, will not meet at infinity. Thus any
two lines in the real projective plane meet in a single point!

(b) Consider the region in the plane bounded above by:

max{y = −x, y = 1, y = x}
and bounded below by

min{y = x, y = −1, y = −x}
The points at infinity to add to this bow-tie-shaped region are:

{(1 : m : 0) | − 1 ≤ m ≤ 1}
If you were to walk along the positive x-axis (growing linearly taller

in proportion to your distance from the origin), you would reach infinity
on the right and then flip upside down as you return from infinity on
the left. This means that the closure of the bow-tie is a copy of the
Möbius strip, which is a “one-sided” surface that cannot be embedded
in a sphere. Moreover, the complementary region to the bow-tie closure
is a topological disk, realizing the projective plane as a Möbius strip
capped with a disk, which cannot be placed into R3. In particular, RP2

is not a sphere, but rather a one-sided pseudo-sphere.

Take-Home. Consider the vertices of a regular polygon in the plane.
Between any two vertices there are two line segments, namely the ordi-
nary “finite” line segment in the plane and the “infinite” line segment
that joins the vertices through the point at infinity. For your consid-
eration, try to count the simple polygons with your given vertices, if
you allow yourself to use either finite or infinite line segments. In other
words, count the ways of drawing a path of line segments that visits
each vertex once and does not cross itself. For example:

Given the vertices of an equilateral triangle, each segment may be
either finite or infinite, and the result will be a non-crossing path that
traverses each vertex. Thus, there are 8 = 23 possible such triangles.

There are 15 quadrilaterals(!) How many pentagons are there?


