
Lesson Sixteen

Math 6080 (for the Masters Teaching Program), Summer 2020

16. Fermat’s Little Theorem. Let m be a natural number. Then:

Euler’s Theorem. If r ∈ {1, ....,m− 1} is relatively prime to m, then

(rφ(m))%m = 1

Examples. (a) φ(8) = 8− 4 = 4 and

14 = 1, 34 = 81, 54 = 625, 74 = 2401

verifies Euler’s Theorem (they all have remainder 1 when divided by 8).

(b) φ(5) is also 4, and in that case:

14 = 1, 24 = 16, 34 = 81, 44 = 256

verify Euler’s Theorem.

Proof. List all the numbers r1, ..., rφ(m) ∈ {1, ....,m − 1} that are relatively
prime to m. Multiply each of them by r. Since rx = ri has a unique solution for
all i in modulo m arithmetic, it follows that:

r · r1, r · r2, ...., r · rφ(m)

are just the same numbers r1, r2, ..., rφ(m) in a different order. Thus:

r1 · r2 · · · rφ(m) = rr1 · rr2 · · · rrφ(m)

in modulo m arithmetic, and we can divide both sides by each ri, leaving

1 = (rφ(m))%m �

Corollary. If p is prime number and r ∈ {1, ...., p− 1}, then:

(rp−1)%p = 1

This Corollary is Fermat’s Little Theorem.

Note. This gives a definitive criterion for showing that a number n is not prime
without finding a factor of n. Namely, if you find that:

(rn−1)%n 6= 1

for any r ∈ {2, ..., n1}, then n is not a prime number.

At first glance, this doesn’t seem to be a very checkable criterion when n is large.
But in fact, it is quite the opposite!

Strategy for computing:
(rm)%n

when m and n are large numbers.

Step 1. Convert m to binary.

Step 2. By taking repeated squares, compute:

r, r2, r4 = (r2)(r2), r8 = (r4)(r4), ... modulo n

Step 3. Multiply together the powers of r (modulo n) corresponding to the 1’s in
the binary expansion of m to compute the mth power.
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Example. Compute 226 modulo 27.

Step 1. The binary expansion of 26 is 11010

Step 2. The successive squares of 2 modulo 27 are:

2, 22 = 4, 24 = 16, 28 = 256%27 = 13, 216 = 132 = 169%27 = 7

Step 3. The answer is 216 ∗ 28 ∗ 22 = 7 ∗ 13 ∗ 4 = 364%27 = 13.

Thus we conclude (without factoring it) that 27 is not a prime.

Exercise. Write Python code to prompt the user for a number m, ask the user for
an additional number r > 1, and then follow the steps above to return the value of
rm−1 modulo m, telling the user either:

• Our computation shows that m is not prime.

or

• Our computation does not determine if m is prime or not. Try another r.

Extended Project. When do the powers of 2 unmask a composite number?

Put the odd numbers m from 1 to 1000 into a table and test:

2m−1 modulo m

Compare the odd numbers m for which (2m−1)%m = 1 with the primes numbers.
Which composite numbers snuck through?

A number m for which:

2m−1, 3m−1, 5m−1 and 7m−1 are all 1 modulo m

will be called a “good enough for government work” prime. Use Python to find the
first “good enough for government work” prime number that is not prime.

Hint: It is very big. If we toss in 11 and 13, it is very, very big.


