Lesson Sixteen

Math 6080 (for the Masters Teaching Program), Summer 2020
16. Fermat's Little Theorem. Let m be a natural number. Then:

Euler's Theorem. If $r \in\{1, \ldots ., m-1\}$ is relatively prime to m, then

$$
\left(r^{\phi(m)}\right) \% m=1
$$

Examples. (a) $\phi(8)=8-4=4$ and

$$
1^{4}=1,3^{4}=81,5^{4}=625,7^{4}=2401
$$

verifies Euler's Theorem (they all have remainder 1 when divided by 8).
(b) $\phi(5)$ is also 4 , and in that case:

$$
1^{4}=1,2^{4}=16,3^{4}=81,4^{4}=256
$$

verify Euler's Theorem.
Proof. List all the numbers $r_{1}, \ldots, r_{\phi(m)} \in\{1, \ldots, m-1\}$ that are relatively prime to m. Multiply each of them by r. Since $r x=r_{i}$ has a unique solution for all i in modulo m arithmetic, it follows that:

$$
r \cdot r_{1}, r \cdot r_{2}, \ldots ., r \cdot r_{\phi(m)}
$$

are just the same numbers $r_{1}, r_{2}, \ldots, r_{\phi(m)}$ in a different order. Thus:

$$
r_{1} \cdot r_{2} \cdots r_{\phi(m)}=r r_{1} \cdot r r_{2} \cdots r r_{\phi(m)}
$$

in modulo m arithmetic, and we can divide both sides by each r_{i}, leaving

$$
1=\left(r^{\phi(m)}\right) \% m
$$

Corollary. If p is prime number and $r \in\{1, \ldots, p-1\}$, then:

$$
\left(r^{p-1}\right) \% p=1
$$

This Corollary is Fermat's Little Theorem.
Note. This gives a definitive criterion for showing that a number n is not prime without finding a factor of n. Namely, if you find that:

$$
\left(r^{n-1}\right) \% n \neq 1
$$

for any $r \in\left\{2, \ldots, n_{1}\right\}$, then n is not a prime number.
At first glance, this doesn't seem to be a very checkable criterion when n is large. But in fact, it is quite the opposite!

Strategy for computing:

$$
\left(r^{m}\right) \% n
$$

when m and n are large numbers.
Step 1. Convert m to binary.
Step 2. By taking repeated squares, compute:

$$
r, r^{2}, r^{4}=\left(r^{2}\right)\left(r^{2}\right), r^{8}=\left(r^{4}\right)\left(r^{4}\right), \ldots \text { modulo } n
$$

Step 3. Multiply together the powers of r (modulo n) corresponding to the 1 's in the binary expansion of m to compute the m th power.

Example. Compute 2^{26} modulo 27.
Step 1. The binary expansion of 26 is 11010
Step 2. The successive squares of 2 modulo 27 are:

$$
2,2^{2}=4,2^{4}=16,2^{8}=256 \% 27=13,2^{16}=13^{2}=169 \% 27=7
$$

Step 3. The answer is $2^{16} * 2^{8} * 2^{2}=7 * 13 * 4=364 \% 27=13$.
Thus we conclude (without factoring it) that 27 is not a prime.
Exercise. Write Python code to prompt the user for a number m, ask the user for an additional number $r>1$, and then follow the steps above to return the value of r^{m-1} modulo m, telling the user either:

- Our computation shows that m is not prime.
or
- Our computation does not determine if m is prime or not. Try another r.

Extended Project. When do the powers of 2 unmask a composite number?
Put the odd numbers m from 1 to 1000 into a table and test:

$$
2^{m-1} \text { modulo } m
$$

Compare the odd numbers m for which $\left(2^{m-1}\right) \% m=1$ with the primes numbers. Which composite numbers snuck through?

A number m for which:

$$
2^{m-1}, 3^{m-1}, 5^{m-1} \text { and } 7^{m-1} \text { are all } 1 \text { modulo } m
$$

will be called a "good enough for government work" prime. Use Python to find the first "good enough for government work" prime number that is not prime.

Hint: It is very big. If we toss in 11 and 13 , it is very, very big.

