Lesson Seventeen

Math 6080 (for the Masters Teaching Program), Summer 2020
17. Ciphers. A cipher encodes a message by replacing each letter of the message with another via a bijective function:

$$
f:\{\text { letters of the alphabet } \rightarrow \text { \{letters of the alphabet }\}
$$

In the cipher, a is replaced by $f(a), b$ is replaced by $f(b)$, etc.
We will ignore cases, and assign a number between 1 and 26 to each letter:

$$
\text { a or } \mathrm{A} \leftrightarrow 1, \mathrm{~b} \text { or } \mathrm{B} \leftrightarrow 2, \cdots, \mathrm{z} \text { or } \mathrm{Z} \leftrightarrow 26
$$

so that we can reinterpret f as a bijective function on the numbers from 1 to 26 :

$$
f:\{1,2, \ldots, 26\} \rightarrow\{1,2, \ldots, 26\}
$$

Exercise. Complete the following table using Python:

$$
\begin{array}{ccccccc}
\text { a } & \text { b } & \text { c } & \cdots & \text { x } & . y & \text { z } \\
1 & 2 & 3 & \cdots & 24 & 25 & 26
\end{array}
$$

Ciphers Based on Addition and on Multiplication.

(i) Addition. Think of 1 to 26 (with $26 \% 26=0$) as the numbers modulo 26 . Pick a number $r \in\{1, \ldots ., 25\}$ and let f be the function:

$$
f(x)=(x+r) \% 26
$$

This is a cipher that shifts the letters forward by r units. (It seems Julius Caesar was fond of shifting by 3.) The function f is a bijection, and the inverse to f is the shift by r units backwrds, or (if you prefer shifting forward), the shift forward by $26-r$. Caesar would thus encode:
'happy birthday' as 'kdssb eluwkgdb'
(if he spoke English, and if he cared to wish anyone a happy birthday).
(ii) Multiplication. In this case, we think of the numbers $\{1, \ldots, 26\}$ as all the nonzero numbers modulo 27. Pick a number r with $\operatorname{gcd}(r, 27)=1$ (i.e. r is any of the 18 numbers not divisible by three). Then we saw in Lesson Fifteen that:

$$
f(x)=(r x) \% 27
$$

is a bijective function, with inverse function $g(y)=(a y) \% 27$ where a comes from the enhanced Euclid's algorithm:

$$
a r+b \cdot 27=1
$$

Exercise. Prompt the user for some text.
(i) Prompt the user for a number between 1 and 25 , and then encode the text (leaving anything that is not a letter alone, and reducing all letters to lower case) via the shift cipher. Offer to decode the message for the user.
(ii) Do the same for a number relatively prime to 27 and multiplication.

Remark. If you type ord('a') or ord('A') into Python, you get the "ascii" values of a and A. Note them down and note that the ascii values of b,c,d,e,... and B,C,D,E... progress as you would expect. This, along with the inverse function $\operatorname{chr}(n)$, is a time-saver for Python programs.

