
Lesson Seventeen

Math 6080 (for the Masters Teaching Program), Summer 2020

17. Ciphers. A cipher encodes a message by replacing each letter of the message
with another via a bijective function:

f : {letters of the alphabet→ {letters of the alphabet}
In the cipher, a is replaced by f(a), b is replaced by f(b), etc.

We will ignore cases, and assign a number between 1 and 26 to each letter:

a or A↔ 1,b or B↔ 2, · · · , z or Z↔ 26

so that we can reinterpret f as a bijective function on the numbers from 1 to 26:

f : {1, 2, ..., 26} → {1, 2, ..., 26}
Exercise. Complete the following table using Python:

a b c · · · x .y z
1 2 3 · · · 24 25 26

Ciphers Based on Addition and on Multiplication.

(i) Addition. Think of 1 to 26 (with 26%26 = 0) as the numbers modulo 26.
Pick a number r ∈ {1,, 25} and let f be the function:

f(x) = (x + r)%26

This is a cipher that shifts the letters forward by r units. (It seems Julius Caesar
was fond of shifting by 3.) The function f is a bijection, and the inverse to f is the
shift by r units backwrds, or (if you prefer shifting forward), the shift forward by
26− r. Caesar would thus encode:

’happy birthday’ as ’kdssb eluwkgdb’

(if he spoke English, and if he cared to wish anyone a happy birthday).

(ii) Multiplication. In this case, we think of the numbers {1,, 26} as all the
nonzero numbers modulo 27. Pick a number r with gcd(r, 27) = 1 (i.e. r is any of
the 18 numbers not divisible by three). Then we saw in Lesson Fifteen that:

f(x) = (rx)%27

is a bijective function, with inverse function g(y) = (ay)%27 where a comes from
the enhanced Euclid’s algorithm:

ar + b · 27 = 1

Exercise. Prompt the user for some text.

(i) Prompt the user for a number between 1 and 25, and then encode the text
(leaving anything that is not a letter alone, and reducing all letters to lower case)
via the shift cipher. Offer to decode the message for the user.

(ii) Do the same for a number relatively prime to 27 and multiplication.

Remark. If you type ord(’a’) or ord(’A’) into Python, you get the “ascii” values of
a and A. Note them down and note that the ascii values of b,c,d,e,... and B,C,D,E...
progress as you would expect. This, along with the inverse function chr(n), is a
time-saver for Python programs.

1

